Рассчитай точную стоимость своей работы и получи промокод на скидку 200 ₽
Найди эксперта для помощи в учебе
Найти эксперта
+2
Пример заказа на Автор24
Студенческая работа на тему:
Показать, что: 1)касательные плоскости в соответствующих точках поверхностей Fи Ф параллельны 2) свойство параллельности взаимно(т.е. если
Создан заказ №1201821
15 мая 2016

Показать, что: 1)касательные плоскости в соответствующих точках поверхностей Fи Ф параллельны 2) свойство параллельности взаимно(т.е. если

Как заказчик описал требования к работе:
поверхность Ф называют параллельной поверхности F, если она является геометрическимместом концов отрезков постоянной длины, отложенных на нормалях поверхности F. Будем считать соответствующими точками поверхностей F и Ф концы отрезков, о которых идет речь в определении Показать, что: 1)касательные п лоскости в соответствующих точках поверхностей Fи Ф параллельны 2) свойство параллельности взаимно(т.е. если Ф параллельно F, то F параллельно Ф 3) линиям кривизны поверхности F соответствуют линии кривизны поверхности Ф
подробнее
Заказчик
заплатил
200 ₽
Заказчик не использовал рассрочку
Гарантия сервиса
Автор24
20 дней
Заказчик принял работу без использования гарантии
16 мая 2016
Заказ завершен, заказчик получил финальный файл с работой
5
Заказ выполнил
volzanka713
5
скачать
Показать, что: 1)касательные плоскости в соответствующих точках поверхностей Fи Ф параллельны 2) свойство параллельности взаимно(т.е. если .docx
2018-06-15 22:53
Последний отзыв студента о бирже Автор24
Общая оценка
5
Положительно
Работа с автором очень понравилась, сделал все быстро качественно и все в сроки , и за довольно низкую цену, рекомендую всем !!!!!

Хочешь такую же работу?

Оставляя свои контактные данные и нажимая «Создать задание», я соглашаюсь пройти процедуру регистрации на Платформе, принимаю условия Пользовательского соглашения и Политики конфиденциальности в целях заключения соглашения.
Хочешь написать работу самостоятельно?
Используй нейросеть
Мы создали собственный искусственный интеллект,
чтобы помочь тебе с учебой за пару минут 👇
Использовать нейросеть
Тебя также могут заинтересовать
метрические соотношения в четырехугольнике
Курсовая работа
Геометрия
Стоимость:
700 ₽
решение задачи различными способами
Решение задач
Геометрия
Стоимость:
150 ₽
задача по геометрии три признака равенства треугольников
Решение задач
Геометрия
Стоимость:
150 ₽
Ранобедренные треугольники,хорда,окружность
Контрольная работа
Геометрия
Стоимость:
300 ₽
Знайдіть периметр трикутника DEF, якщо DF=3см , EF= 5см , F=120°
Контрольная работа
Геометрия
Стоимость:
300 ₽
Аналитическая геометрия в пространстве
Контрольная работа
Геометрия
Стоимость:
300 ₽
решение задач геометрия
Контрольная работа
Геометрия
Стоимость:
300 ₽
Читай полезные статьи в нашем
Площадь. Формулы площади
Понятие площади многоугольника будем связывать с такой геометрической фигурой, как квадрат. За единицу площади многоугольника будем принимать площадь квадрата со стороной, равной единице. Введем два основных свойства, для понятия площади многоугольника.
Далее введем площади основных фигур планиметрии: квадрата, прямоугольника, параллелограмма, трапеции и треугольника без их вывода.
[Теорема] Площадь...
подробнее
Как найти площадь квадрата и площадь прямоугольника
Понятие площади многоугольника будем связывать с такой геометрической фигурой, как квадрат. За единицу площади многоугольника будем принимать площадь квадрата со стороной, равной единице. Введем два основных свойства, для понятия площади многоугольника.
Свойство 1: Для равных многоугольников значения их площадей равны.
Свойство 2: Любой многоугольник можно разбить на несколько многоугольников. При э...
подробнее
Как найти вектор, коллинеарный вектору
Вначале надо разобраться, что является геометрическим вектором. Для этого сначала введем понятие отрезка.
Для введения определения вектора один из концов отрезка назовем его началом.
Обозначение: \overline{AB} - вектор AB , имеющий начало в точке A , а конец в точке B .
Иначе одной маленькой буквой: \overline{a} (рис. 1).

Обозначение: \overline{0} .
Введем теперь, непосредственно, определение к...
подробнее
Метод координат в пространстве
Сущностью решения задач с помощью координатного метода состоит в том, чтоб ввести удобную нам в том или ином случае систему координат и переписать все данные с помощью него. После этого все неизвестные величины или доказательства проводятся с помощью этой системы. Как ввести координаты точек в любой системе координат, было нами рассмотрено в другой статье – здесь мы на этом останавливаться не буде...
подробнее
Площадь. Формулы площади
Понятие площади многоугольника будем связывать с такой геометрической фигурой, как квадрат. За единицу площади многоугольника будем принимать площадь квадрата со стороной, равной единице. Введем два основных свойства, для понятия площади многоугольника.
Далее введем площади основных фигур планиметрии: квадрата, прямоугольника, параллелограмма, трапеции и треугольника без их вывода.
[Теорема] Площадь...
подробнее
Как найти площадь квадрата и площадь прямоугольника
Понятие площади многоугольника будем связывать с такой геометрической фигурой, как квадрат. За единицу площади многоугольника будем принимать площадь квадрата со стороной, равной единице. Введем два основных свойства, для понятия площади многоугольника.
Свойство 1: Для равных многоугольников значения их площадей равны.
Свойство 2: Любой многоугольник можно разбить на несколько многоугольников. При э...
подробнее
Как найти вектор, коллинеарный вектору
Вначале надо разобраться, что является геометрическим вектором. Для этого сначала введем понятие отрезка.
Для введения определения вектора один из концов отрезка назовем его началом.
Обозначение: \overline{AB} - вектор AB , имеющий начало в точке A , а конец в точке B .
Иначе одной маленькой буквой: \overline{a} (рис. 1).

Обозначение: \overline{0} .
Введем теперь, непосредственно, определение к...
подробнее
Метод координат в пространстве
Сущностью решения задач с помощью координатного метода состоит в том, чтоб ввести удобную нам в том или ином случае систему координат и переписать все данные с помощью него. После этого все неизвестные величины или доказательства проводятся с помощью этой системы. Как ввести координаты точек в любой системе координат, было нами рассмотрено в другой статье – здесь мы на этом останавливаться не буде...
подробнее
Теперь вам доступен полный отрывок из работы
Также на e-mail вы получите информацию о подробном расчете стоимости аналогичной работы