Рассчитай точную стоимость своей работы и получи промокод на скидку 300 ₽
Найди эксперта для помощи в учебе
Найти эксперта
+2
Пример заказа на Автор24
Студенческая работа на тему:
Сферическая геометрия/тригонометрия
Создан заказ №158685
25 марта 2014

Сферическая геометрия/тригонометрия

Как заказчик описал требования к работе:
Аннотация, Научная статья (описание работы) - включая чертежи, графики, таблицы, выводы и результаты.
Заказчик
заплатил
200 ₽
Заказчик не использовал рассрочку
Гарантия сервиса
Автор24
20 дней
Заказчик воспользовался гарантией, чтобы исполнитель повысил уникальность работы
26 марта 2014
Заказ завершен, заказчик получил финальный файл с работой
5
Заказ выполнил
IG1968
5
скачать
Сферическая геометрия/тригонометрия.docx
2018-12-25 11:52
Последний отзыв студента о бирже Автор24
Общая оценка
4
Положительно
Работа качественно и досрочно. Выявленные замечания сразу исправлялись. С автором было работать легко и приятно.

Хочешь такую же работу?

Оставляя свои контактные данные и нажимая «Создать задание», я соглашаюсь пройти процедуру регистрации на Платформе, принимаю условия Пользовательского соглашения и Политики конфиденциальности в целях заключения соглашения.
Хочешь написать работу самостоятельно?
Используй нейросеть
Мы создали собственный искусственный интеллект,
чтобы помочь тебе с учебой за пару минут 👇
Использовать нейросеть
Тебя также могут заинтересовать
логические задачи по математике 9 класс
Решение задач
Геометрия
Стоимость:
150 ₽
Геометрия
Решение задач
Геометрия
Стоимость:
150 ₽
Решить 3 задачи по геометрии
Решение задач
Геометрия
Стоимость:
150 ₽
СТЕРЕОМЕТРИЯ ПРИЗМА
Реферат
Геометрия
Стоимость:
300 ₽
Неевклидовы геометрии
Реферат
Геометрия
Стоимость:
300 ₽
Геометрия в строительстве
Реферат
Геометрия
Стоимость:
300 ₽
Загадки круга(геометрия)
Реферат
Геометрия
Стоимость:
300 ₽
окружность в архитектуре и в искусстве
Реферат
Геометрия
Стоимость:
300 ₽
Реферат на тему: Полуправильные многогранники
Реферат
Геометрия
Стоимость:
300 ₽
Точка. Прямая. Отрезок.
Реферат
Геометрия
Стоимость:
300 ₽
Читай полезные статьи в нашем
Площадь. Формулы площади
Понятие площади многоугольника будем связывать с такой геометрической фигурой, как квадрат. За единицу площади многоугольника будем принимать площадь квадрата со стороной, равной единице. Введем два основных свойства, для понятия площади многоугольника.
Далее введем площади основных фигур планиметрии: квадрата, прямоугольника, параллелограмма, трапеции и треугольника без их вывода.
[Теорема] Площадь...
подробнее
Соотношение между сторонами и углами треугольника
Вначале рассмотрим непосредственно понятие треугольника.

Очевидно, что любой треугольник будет иметь 3 вершин, а также три стороны.
Введем следующую теорему.
Эта теорема имеет обратную теорему. Сформулируем и докажем ее.
Из этих двух теорем можно вывести два следствия. Приведем их также в виде теорем и докажем.
Отметим, что последняя теорема также называется признаком равнобедренного треугольника.
Приве...
подробнее
Расстояние от точки до прямой
Введем для начала понятие расстояния между двумя геометрическими объектами.
Точки и прямые также являются одними из геометрических объектов, поэтому для них также определено понятие между ними.
Понятие расстояния также актуально и для разных типов геометрических объектов. Мы можем, к примеру, найти расстояние между точкой и прямой. Рассмотрим это понятие в виде задачи.
Вывод: Для нахождения расстояни...
подробнее
Как найти угол между векторами
Для того, чтобы мы могли ввести формулу для вычисления угла между векторами, нужно сначала разобраться с самим понятием угла между этими векторами.

Причем мы будем считать, что если векторы \overline{α} и \overline{β} будут сонаправленными или один или оба из них будет нулевым вектором, то угол между этими векторами будет равняться 0^\circ .
Обозначение: ∠(\overline{α},\overline{β})
Вспомним с...
подробнее
Площадь. Формулы площади
Понятие площади многоугольника будем связывать с такой геометрической фигурой, как квадрат. За единицу площади многоугольника будем принимать площадь квадрата со стороной, равной единице. Введем два основных свойства, для понятия площади многоугольника.
Далее введем площади основных фигур планиметрии: квадрата, прямоугольника, параллелограмма, трапеции и треугольника без их вывода.
[Теорема] Площадь...
подробнее
Соотношение между сторонами и углами треугольника
Вначале рассмотрим непосредственно понятие треугольника.

Очевидно, что любой треугольник будет иметь 3 вершин, а также три стороны.
Введем следующую теорему.
Эта теорема имеет обратную теорему. Сформулируем и докажем ее.
Из этих двух теорем можно вывести два следствия. Приведем их также в виде теорем и докажем.
Отметим, что последняя теорема также называется признаком равнобедренного треугольника.
Приве...
подробнее
Расстояние от точки до прямой
Введем для начала понятие расстояния между двумя геометрическими объектами.
Точки и прямые также являются одними из геометрических объектов, поэтому для них также определено понятие между ними.
Понятие расстояния также актуально и для разных типов геометрических объектов. Мы можем, к примеру, найти расстояние между точкой и прямой. Рассмотрим это понятие в виде задачи.
Вывод: Для нахождения расстояни...
подробнее
Как найти угол между векторами
Для того, чтобы мы могли ввести формулу для вычисления угла между векторами, нужно сначала разобраться с самим понятием угла между этими векторами.

Причем мы будем считать, что если векторы \overline{α} и \overline{β} будут сонаправленными или один или оба из них будет нулевым вектором, то угол между этими векторами будет равняться 0^\circ .
Обозначение: ∠(\overline{α},\overline{β})
Вспомним с...
подробнее
Теперь вам доступен полный отрывок из работы
Также на e-mail вы получите информацию о подробном расчете стоимости аналогичной работы