Рассчитай точную стоимость своей работы и получи промокод на скидку 200 ₽
Найди эксперта для помощи в учебе
Найти эксперта
+2
Пример заказа на Автор24
Студенческая работа на тему:
Теорема Пифагора
Создан заказ №1711047
31 января 2017

Теорема Пифагора

Как заказчик описал требования к работе:
Работа на 8-10 страниц разбитая на несколько частей : -Вступление -Не большая история Пифагора -объяснение теоремы (с графиками) -Вычисление -Заключение -Сссылки на используемые ресурсы
Фрагмент выполненной работы:
Введение Одной из самых известных и распространенных теорем в геометрии является Теорема Пифагора. Грубо говоря, хоть теорема и носит название «теорема Пифагора», но при этом сам Пифагор ее не открывал. Прямоугольный треугольник и его особенные свойства изучались задолго до него. Есть две противоположных точки зрения касательно данного вопроса. По одной из этих версий Пифагор первым нашел полноценное доказательство своей же теоремы. (работа была выполнена специалистами Автор 24) По второй – автором является другой ученый. На сегодняшний день неизвестно точно, кто прав, а кто нет. Известно только, что доказательства Пифагора, если оно когда-либо существовало, не сохранилось. Впрочем, выдвигаются такие предположения, что знаменитое доказательство из «Начал» Евклида может принадлежать как раз Пифагору, и Евклид его только зафиксировал документальноПосмотреть предложения по расчету стоимости
Зарегистрируйся, чтобы получить больше информации по этой работе
Заказчик
заплатил
200 ₽
Заказчик не использовал рассрочку
Гарантия сервиса
Автор24
20 дней
Заказчик воспользовался гарантией для внесения правок на основе комментариев преподавателя
1 февраля 2017
Заказ завершен, заказчик получил финальный файл с работой
5
Заказ выполнил
ArsMG1970
5
скачать
Теорема Пифагора .docx

Хочешь такую же работу?

Оставляя свои контактные данные и нажимая «Создать задание», я соглашаюсь пройти процедуру регистрации на Платформе, принимаю условия Пользовательского соглашения и Политики конфиденциальности в целях заключения соглашения.
Хочешь написать работу самостоятельно?
Используй нейросеть
Мы создали собственный искусственный интеллект,
чтобы помочь тебе с учебой за пару минут 👇
Использовать нейросеть
Тебя также могут заинтересовать
Допустим, точки C(- 1; 4) D(3; 8) и E(6; 10) являются вершинами треуго
Решение задач
Геометрия
Стоимость:
150 ₽
Олимпиада по геометрии
Решение задач
Геометрия
Стоимость:
150 ₽
3 Курсовых по геометрии
Курсовая работа
Геометрия
Стоимость:
700 ₽
СРОЧНО курсовая работа по геометрии
Курсовая работа
Геометрия
Стоимость:
700 ₽
Тензорный анализ и его приложения
Реферат
Геометрия
Стоимость:
300 ₽
геометрия на клетчатой бумаге
Курсовая работа
Геометрия
Стоимость:
700 ₽
Читай полезные статьи в нашем
Как найти площадь квадрата и площадь прямоугольника
Понятие площади многоугольника будем связывать с такой геометрической фигурой, как квадрат. За единицу площади многоугольника будем принимать площадь квадрата со стороной, равной единице. Введем два основных свойства, для понятия площади многоугольника.
Свойство 1: Для равных многоугольников значения их площадей равны.
Свойство 2: Любой многоугольник можно разбить на несколько многоугольников. При э...
подробнее
Сумма углов треугольника. Теорема о сумме углов треугольника
Вначале рассмотрим непосредственно понятие треугольника.

Очевидно, что любой треугольник будет иметь 3 вершин, а также три стороны.
Введем и докажем одну из основных теорем, связанную с треугольников, а именно теорему о сумме углов в треугольнике.
Еще одной теоремой о сумме углов для треугольника можно считать теорему о внешнем угле. Для начала введем это понятие.

Рассмотрим теперь непосредственно тео...
подробнее
Построение треугольника по трем элементам
В геометрии довольно распространены так называемые задачи на построение. Их суть заключается в том, чтобы построить какой-либо геометрический объект по какому-либо достаточному набору начальных условий имея под рукой только циркуль и линейку. Рассмотрим общую схему для выполнения таких задач:
Далее будем рассматривать задачи на построение треугольников по различным трем элементам. Здесь мы не будем...
подробнее
Как найти вектор, перпендикулярный вектору
Вначале надо разобраться, что является геометрическим вектором. Для этого сначала введем понятие отрезка.
Для введения определения вектора один из концов отрезка назовем его началом.
Обозначение: \overline{AB} - вектор AB , имеющий начало в точке A , а конец в точке B .
Иначе одной маленькой буквой: \overline{a} (рис. 1).

Обозначение: \overline{0} .
Введем теперь, непосредственно, определение к...
подробнее
Как найти площадь квадрата и площадь прямоугольника
Понятие площади многоугольника будем связывать с такой геометрической фигурой, как квадрат. За единицу площади многоугольника будем принимать площадь квадрата со стороной, равной единице. Введем два основных свойства, для понятия площади многоугольника.
Свойство 1: Для равных многоугольников значения их площадей равны.
Свойство 2: Любой многоугольник можно разбить на несколько многоугольников. При э...
подробнее
Сумма углов треугольника. Теорема о сумме углов треугольника
Вначале рассмотрим непосредственно понятие треугольника.

Очевидно, что любой треугольник будет иметь 3 вершин, а также три стороны.
Введем и докажем одну из основных теорем, связанную с треугольников, а именно теорему о сумме углов в треугольнике.
Еще одной теоремой о сумме углов для треугольника можно считать теорему о внешнем угле. Для начала введем это понятие.

Рассмотрим теперь непосредственно тео...
подробнее
Построение треугольника по трем элементам
В геометрии довольно распространены так называемые задачи на построение. Их суть заключается в том, чтобы построить какой-либо геометрический объект по какому-либо достаточному набору начальных условий имея под рукой только циркуль и линейку. Рассмотрим общую схему для выполнения таких задач:
Далее будем рассматривать задачи на построение треугольников по различным трем элементам. Здесь мы не будем...
подробнее
Как найти вектор, перпендикулярный вектору
Вначале надо разобраться, что является геометрическим вектором. Для этого сначала введем понятие отрезка.
Для введения определения вектора один из концов отрезка назовем его началом.
Обозначение: \overline{AB} - вектор AB , имеющий начало в точке A , а конец в точке B .
Иначе одной маленькой буквой: \overline{a} (рис. 1).

Обозначение: \overline{0} .
Введем теперь, непосредственно, определение к...
подробнее
Теперь вам доступен полный отрывок из работы
Также на e-mail вы получите информацию о подробном расчете стоимости аналогичной работы