Рассчитай точную стоимость своей работы и получи промокод на скидку 200 ₽
Найди эксперта для помощи в учебе
Найти эксперта
+2
Пример заказа на Автор24
Студенческая работа на тему:
Самостоятельная работа по теме: «Подобные треугольники. Отношение площадей подобных треугольников» 8 класс
Создан заказ №1744799
13 февраля 2017

Самостоятельная работа по теме: «Подобные треугольники. Отношение площадей подобных треугольников» 8 класс

Как заказчик описал требования к работе:
.ΔАВС~ΔА1В1С1, АВ и А1В1 сходственные стороны треугольников, АВ:А1В1=3:5, А 1В1=25 см; А 1С 1=30 см; В 1С 1=35 см. Найдите стороны ΔАВС. В2. ΔMNK~ΔM1N1K1 , M 1N 1=20 см, M 1K 1=45 см, N 1K 1=25см. Найдите периметр ΔMNK . Вычислите площадь ΔMNK, если известно, что площадь ΔM1N1K1 равна 180 см2. С3. Площади подобных треугольников равны 100дм2 и 25 дм2, сумма их периметров равна 117 дм. Найдите периметры обоих треугольников
подробнее
Заказчик
заплатил
20 ₽
Заказчик не использовал рассрочку
Гарантия сервиса
Автор24
20 дней
Заказчик принял работу без использования гарантии
14 февраля 2017
Заказ завершен, заказчик получил финальный файл с работой
5
Заказ выполнил
alexey_ktop
5
скачать
Самостоятельная работа по теме: «Подобные треугольники. Отношение площадей подобных треугольников» 8 класс.jpg
2017-02-17 22:01
Последний отзыв студента о бирже Автор24
Общая оценка
5
Положительно
Самый лучший автор тут )! Все работы выполняет на очень высоком уровне , оперативно помогает в режиме онлайн , в случае возникновения вопросов , все доступно и подробно объясняет )! Всем советую этого автора !)

Хочешь такую же работу?

Оставляя свои контактные данные и нажимая «Создать задание», я соглашаюсь пройти процедуру регистрации на Платформе, принимаю условия Пользовательского соглашения и Политики конфиденциальности в целях заключения соглашения.
Хочешь написать работу самостоятельно?
Используй нейросеть
Мы создали собственный искусственный интеллект,
чтобы помочь тебе с учебой за пару минут 👇
Использовать нейросеть
Тебя также могут заинтересовать
Центр масс однородной пластинки произвольной формы.
Отчёт по практике
Геометрия
Стоимость:
700 ₽
Применение различных методов при решении задач В14 ЕГЭ
Курсовая работа
Геометрия
Стоимость:
700 ₽
Задачи на построение
Решение задач
Геометрия
Стоимость:
150 ₽
В треугольнике ABC, \displaystyle BC=5BC=5, AC=9. Если \displaystyle \
Решение задач
Геометрия
Стоимость:
150 ₽
решение задач
Решение задач
Геометрия
Стоимость:
150 ₽
Методы решения стереометрических задач
Реферат
Геометрия
Стоимость:
300 ₽
практическое задание по начертательной геометрии
Решение задач
Геометрия
Стоимость:
150 ₽
Самостоятельная работа на тему "изображения" по геометрии
Решение задач
Геометрия
Стоимость:
150 ₽
найти площадь боковой поверхности наклонной призмы
Решение задач
Геометрия
Стоимость:
150 ₽
практическое задание по начертательной геометрии
Решение задач
Геометрия
Стоимость:
150 ₽
решение задач
Решение задач
Геометрия
Стоимость:
150 ₽
перпендикулярность прямой и плоскости
Решение задач
Геометрия
Стоимость:
150 ₽
Решить задачу по шаблону по стереометрии
Решение задач
Геометрия
Стоимость:
150 ₽
Читай полезные статьи в нашем
Формулы параллелограмма, трапеции, квадрата, прямоугольника и ромба
Введем для начала понятие многоугольника вообще.
Четырехугольники могут быть выпуклыми и невыпуклыми.
Классическими примерами выпуклых четырехугольников являются квадрат, прямоугольник, трапеция, ромб, параллелограмм. Рассмотрим далее эти фигуры по отдельности.
подробнее
Как найти площадь треугольника. Формулы треугольника
Понятие площади любой геометрической фигуры, в частности треугольника, будем связывать с такой фигурой, как квадрат. За единицу площади любой геометрической фигуры будем принимать площадь квадрата, сторона которого равняется единице. Для полноты, вспомним два основных свойства для понятия площадей геометрических фигур.
Свойство 1: Если геометрические фигуры равны, то значения их площадей также равн...
подробнее
Прямоугольные треугольники
Вначале рассмотрим понятие произвольного треугольника.

Очевидно, что любой треугольник будет иметь 3 вершин, а также три стороны.
Теперь введем, непосредственно, понятие прямоугольного треугольника.
При этом стороны, которые прилегают к прямому углу, будут называться катетами, а третья сторона – гипотенузой (рис. 2).

Как и для любого треугольника, для прямоугольного справедлива следующая теорема:
Сформ...
подробнее
Движение
Перед тем, как ввести понятие движения в пространстве, надо ввести определение отображения пространства на себя.
Введем теперь, непосредственно, определение движения.
Пример – рисунок 1.

Введем теперь несколько теорем, связанных с понятием движения без доказательства.
Основными примерами движений являются центральная, осевая и зеркальная симметрии. Рассмотрим их более подробно.
Перед тем, как определит...
подробнее
Формулы параллелограмма, трапеции, квадрата, прямоугольника и ромба
Введем для начала понятие многоугольника вообще.
Четырехугольники могут быть выпуклыми и невыпуклыми.
Классическими примерами выпуклых четырехугольников являются квадрат, прямоугольник, трапеция, ромб, параллелограмм. Рассмотрим далее эти фигуры по отдельности.
подробнее
Как найти площадь треугольника. Формулы треугольника
Понятие площади любой геометрической фигуры, в частности треугольника, будем связывать с такой фигурой, как квадрат. За единицу площади любой геометрической фигуры будем принимать площадь квадрата, сторона которого равняется единице. Для полноты, вспомним два основных свойства для понятия площадей геометрических фигур.
Свойство 1: Если геометрические фигуры равны, то значения их площадей также равн...
подробнее
Прямоугольные треугольники
Вначале рассмотрим понятие произвольного треугольника.

Очевидно, что любой треугольник будет иметь 3 вершин, а также три стороны.
Теперь введем, непосредственно, понятие прямоугольного треугольника.
При этом стороны, которые прилегают к прямому углу, будут называться катетами, а третья сторона – гипотенузой (рис. 2).

Как и для любого треугольника, для прямоугольного справедлива следующая теорема:
Сформ...
подробнее
Движение
Перед тем, как ввести понятие движения в пространстве, надо ввести определение отображения пространства на себя.
Введем теперь, непосредственно, определение движения.
Пример – рисунок 1.

Введем теперь несколько теорем, связанных с понятием движения без доказательства.
Основными примерами движений являются центральная, осевая и зеркальная симметрии. Рассмотрим их более подробно.
Перед тем, как определит...
подробнее
Теперь вам доступен полный отрывок из работы
Также на e-mail вы получите информацию о подробном расчете стоимости аналогичной работы