Рассчитай точную стоимость своей работы и получи промокод на скидку 200 ₽
Найди эксперта для помощи в учебе
Найти эксперта
+2
Пример заказа на Автор24
Студенческая работа на тему:
Изучается распределение непрерывного признака X на объектах генеральной совокупности
Создан заказ №1830620
14 марта 2017

Изучается распределение непрерывного признака X на объектах генеральной совокупности

Как заказчик описал требования к работе:
Там одна задача в ворде, и 3 задачи в pdf файле. В PDF файле решать только 9-ый вариант. Спасибо за помощь.
Фрагмент выполненной работы:
Изучается распределение непрерывного признака X на объектах генеральной совокупности. С этой целью из генеральной совокупности извлечена выборка объема n. Результаты наблюдений сведены в интервальный вариационный ряд (данные условия). Требуется Построить гистограмму; Найти точечные оценки числовых характеристик: математического ожидания, дисперсии, среднего квадратического отклонения, моды и медианы; Построить доверительные интервалы для математического ожидания и дисперсии (принять значения доверительной вероятности γ=0,95); Используя гистограмму, оценить вероятности PX-mx<k*σx для k=1, 2, 3; Используя критерий χ2, проверить гипотезу о нормальном распределении признака X (принять уровень значимости α=0,05). Проводилось выборочное обследование затрат времени покупателями крупного универсама в очереди в кассу. (работа была выполнена специалистами Автор 24) Были получены следующие данные: Время ожидания (в мин.) 0-1 1-2 2-3 3-4 4-5 5-6 Количество покупателей 21 93 138 76 42 12 Решение: Гистограммой частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длины h, а высоты равны отношению ni/h (плотность частоты). Площадь частичного i-гo прямоугольника равна h(ni/h)= ni—сумме частот вариант, попавших в i-й интервал. Площадь гистограммы частот равна сумме всех частот, т. е. объему выборки n. Интервал 0-1 1-2 2-3 3-4 4-5 5-6 ni 21 93 138 76 42 12 Объем выборки n=21+93+138+76+42+12=382 Длина интервала h=1. Так как h=1, то плотность частоты ni/h будет равна частоте ni. Построим на оси абсцисс заданные частичные интервалы длины h=1. Проведем над этими интервалами отрезки, параллельные оси абсцисс и находящиеся от нее на расстояниях, равных соответствующим частотам ni. Например, над интервалом 0-1) проведем отрезок, параллельный оси абсцисс и находящийся от нее на расстоянии, равном 21; аналогично строят остальные отрезки. По виду гистограммы можно сделать предположение, что совокупность распределена по нормальному закону. Найдем точечные оценки числовых характеристик. Для того чтобы найти числовые характеристики выборки, необходимо определить середины интервалов: xi*=xi+xi+12 – середина интервала Интервал 0-1 1-2 2-3 3-4 4-5 5-6 xi* 0,5 1,5 2,5 3,5 4,5 5,5 ni 21 93 138 76 42 12 Объем выборки n=382 Несмещенной оценкой генеральной средней (математического ожидания) служит выборочная средняя: xв=i=1knixi*n=21*0,5+93*1,5+138*2,5+76*3,5+42*4,5+12*5,5382=1016382=2,66 Выборочная дисперсия: Dв=i=1knixi*-xв2n Dв=i=1knixi*-xв2n=21(0,5-2,66)2+93(1,5-2,66)2+138(2,5-2,66)2+76(3,5-2,66)2+42(4,5-2,66)2+12(5,5-2,66)2100=519,26382=1,359 Выборочное среднее квадратическое отклонение: σв=Dв=1,359≈1,166 Несмещенной оценкой генеральной дисперсии служит исправленная выборочная дисперсия: S2=nn-1*Dв=ni(xi-xв)2n-1=519,26381=1,363 Выборочное среднее квадратическое отклонение S=S2=1,363≈1,167 Определение моды в интервальном вариационном ряду M0=xmo+if2-f1f2-f1+(f2-f3) xmo – нижняя граница модального интервала; i - разность между верхней и нижней границей модального интервала; f1 - частота интервала, предшествующая модальному; f2 - частота модального интервала; f3 - частота интервала, следующего за модальным M0=xmo+if2-f1f2-f1+(f2-f3)=2+1138-93138-93+(138-76)=2,42 Расчет медианы интервального ряда Mе=xo+if2-S(m-1)fm xo – нижняя граница медианного интервала; i - величина медианного интервала; f - сумма частот интервального ряда; S(m-1) - сумма накопленных частот в интервалах, предшествующих медианному; fm - частота медианного интервала. Mе=xo+if2-S(m-1)fm=2+13822-114138=2,56 Интервальной оценкой (с надежностью γ) математического ожидания a нормально распределенного количественного признака X по выборочной средней xв при известном среднем квадратическом отклонении σ генеральной совокупности служит доверительный интервал: xв -tσn<a<xв +tσn где tσn=δ - точность оценки, n - объем выборки, t - значение аргумента функции Лапласа Ф(t), при котором Фt=γ/2. σ=1,166, γ=0,95, xв=2,66, n=382 Найдем t. Из соотношения Ф(t)= γ/2 получим Ф(t)=0,95/2=0,475. По таблице значений функции Ф(t) находим t=1,96. Найдем точность оценки: δ=tσn=1,961,166382=1,96*0,0597=0,117 Доверительный интервал таков: (xв-0,117;xв+0,117). Так как xв=2,66, то доверительный интервал имеет следующие границы: xв-0,117=2,66-0,117=2,543 xв+0,117=2,66+0,117=2,777 Таким образом, значения неизвестного параметра a, согласующиеся с данными выборки, удовлетворяют неравенству 2,543<a<2,777 Интервальной оценкой (с надежностью γ) среднего квадратического отклонения σ нормально распределенного количественного признака X по исправленному среднему квадратическому отклонению S служит доверительный интервал: S(1-q)<σ<S(1+q) (если q<1) 0<σ<S(1+q) (если q>1) где q находят по таблице значений q по заданным по заданным n и γ. По данным γ=0,95 и по n=382 по таблице значений находим q=0,143...Посмотреть предложения по расчету стоимости
Зарегистрируйся, чтобы получить больше информации по этой работе
Заказчик
заплатил
20 ₽
Заказчик не использовал рассрочку
Гарантия сервиса
Автор24
20 дней
Заказчик принял работу без использования гарантии
15 марта 2017
Заказ завершен, заказчик получил финальный файл с работой
5
Заказ выполнил
vladimirvi
5
скачать
Изучается распределение непрерывного признака X на объектах генеральной совокупности.jpg
2017-09-25 10:13
Последний отзыв студента о бирже Автор24
Общая оценка
5
Положительно
Все сделано в срок, грамотно и быстро, а самое главное, что качественно, если вам нужна помощь по теории вероятностей, это отличный вариант)

Хочешь такую же работу?

Оставляя свои контактные данные и нажимая «Создать задание», я соглашаюсь пройти процедуру регистрации на Платформе, принимаю условия Пользовательского соглашения и Политики конфиденциальности в целях заключения соглашения.
Хочешь написать работу самостоятельно?
Используй нейросеть
Мы создали собственный искусственный интеллект,
чтобы помочь тебе с учебой за пару минут 👇
Использовать нейросеть
Тебя также могут заинтересовать
Контрольная работа анализ данных
Контрольная работа
Теория вероятностей
Стоимость:
300 ₽
теория вероятности и математическая статистика
Контрольная работа
Теория вероятностей
Стоимость:
300 ₽
3 семестр мтуси ,6 задач
Контрольная работа
Теория вероятностей
Стоимость:
300 ₽
Формула Бернулли
Решение задач
Теория вероятностей
Стоимость:
150 ₽
Теория вероятностей
Решение задач
Теория вероятностей
Стоимость:
150 ₽
Теория вероятности в медицине
Реферат
Теория вероятностей
Стоимость:
300 ₽
решение задач
Решение задач
Теория вероятностей
Стоимость:
150 ₽
Теория вероятностей задачи
Решение задач
Теория вероятностей
Стоимость:
150 ₽
Решить задачи по теории вероятности и мат. статистике (см. пояснение)
Решение задач
Теория вероятностей
Стоимость:
150 ₽
Решение задачи по теории вероятности
Решение задач
Теория вероятностей
Стоимость:
150 ₽
Теория вероятностей, формула Байеса, полная вероятность
Решение задач
Теория вероятностей
Стоимость:
150 ₽
Проверить решение задачи на нахождение распределение случайной величины
Решение задач
Теория вероятностей
Стоимость:
150 ₽
Ргр
Решение задач
Теория вероятностей
Стоимость:
150 ₽
Теория вероятностей и математическая статистика
Решение задач
Теория вероятностей
Стоимость:
150 ₽
теория вероятности
Решение задач
Теория вероятностей
Стоимость:
150 ₽
Теория вероятностей и математическая статистика
Решение задач
Теория вероятностей
Стоимость:
150 ₽
Теперь вам доступен полный отрывок из работы
Также на e-mail вы получите информацию о подробном расчете стоимости аналогичной работы