Создан заказ №2052198
9 мая 2017
Для изучения структуры банков по размеру выданных в течение последнего года кредитов из 2000 банков РФ по схеме собственно-случайной бесповторной выборки отобрано 180 банков
Как заказчик описал требования к работе:
Выполнить контрольную по теории вероятности за 2 дня в двух вариантах. Пишите сразу сколько будет стоить контрольная.
Фрагмент выполненной работы:
Для изучения структуры банков по размеру выданных в течение последнего года кредитов из 2000 банков РФ по схеме собственно-случайной бесповторной выборки отобрано 180 банков. Распределение банков по сумме выданных кредитов (млн. руб.) представлено в таблице:
Составить интервальный вариационный ряд. Построить гистограмму и полигон частот (на одном графике), эмпирическую функцию распределения (кумуляту).
По сгруппированным данным вычислить выборочные числовые характеристики: среднее арифметическое, исправленную выборочную дисперсию, среднее квадратичное отклонение, коэффициент вариации, асимметрию, эксцесс, моду и медиану.
Используя -критерий Пирсона, на уровне значимости проверить гипотезу о том, что случайная величина - величина выданных кредитов – распределена по нормальному закону. (работа была выполнена специалистами Автор 24) Построить на чертеже, содержащем гистограмму эмпирического распределения, соответствующую нормальную кривую.
Предположив нормальность распределения величины выданных кредитов, на 5%-ном уровне значимости проверить следующие гипотезы:
а)о числовом значении математического ожидания, приняв в качестве нулевой гипотезы : , где - средняя арифметическая, при альтернативной гипотезе : ;
б)о числовом значении дисперсии, приняв в качестве нулевой гипотезы : , где в качестве взять исправленную выборочную дисперсию, при альтернативной гипотезе : ;
в)о числовом значении вероятности события, состоящего в том, что величина выданных кредитов составляет не более 15 млн. руб., приняв в качестве нулевой гипотезы : , где - соответствующая выборочная доля, вычисленная по не сгруппированным данным, при альтернативной гипотезе .
5.Предположив нормальность распределения величины выданных кредитов, требуется:
а)построить 95%-ные интервальные оценки математического ожидания, дисперсии, среднего квадратичного отклонения и вероятности события, рассмотренного в п. 4в;
б)определить вероятность того, что генеральная средняя, генеральное среднее квадратичное отклонение и генеральная доля, рассмотренная в п. 4в, отличаются от соответствующих им выборочных числовых характеристик не более чем на 5%, то есть оцениваемый параметр генеральной совокупности накрывается интервалом , где - соответствующая выборочная оценка;
в)определить объемы выборок, чтобы те же границы для генеральной средней и генеральной доли (п. 5б) гарантировать с вероятностями большими, чем полученные в п. 5б, на 50% от .
Решение:
Выпишем элементы данной выборки в порядке их возрастания:
8,3 9,9 10,5 11,2 11,2 11,5 11,9 11,9 12,2 12,6
12,7 12,7 12,9 13,0 13,0 13,5 13,5 13,8 13,8 13,9
14,0 14,0 14,0 14,0 14,1 14,1 14,5 14,7 14,8 14,9
15,0 15,1 15,2 15,3 15,5 15,6 15,7 15,8 16,0 16,1
16,3 16,3 16,6 16,8 17,0 17,0 17,1 17,2 17,3 17,3
17,4 17,5 17,5 17,5 17,6 17,6 17,8 17,8 17,9 17,9
18,0 18,0 18,1 18,1 18,2 18,2 18,3 18,5 18,6 18,6
18,6 18,6 18,7 18,9 18,9 18,9 19,0 19,0 19,1 19,2
19,2 19,2 19,3 19,5 19,5 19,5 19,5 19,6 19,6 19,6
19,7 19,9 19,9 20,0 20,1 20,1 20,1 20,2 20,2 20,2
20,2 20,3 20,5 20,7 20,7 20,7 20,8 20,9 21,0 21,1
21,1 21,2 21,3 21,3 21,8 21,8 21,8 21,9 21,9 22,0
22,0 22,1 22,1 22,2 22,2 22,2 22,3 22,3 22,4 22,4
22,5 22,7 22,7 22,7 22,9 23,1 23,2 23,3 23,4 23,4
23,6 23,8 23,9 24,1 24,2 24,2 24,2 24,4 24,6 24,7
24,7 24,9 24,9 25,2 25,2 25,3 25,5 25,6 25,6 25,8
25,8 26,1 26,4 26,6 26,7 26,7 26,8 27,5 27,6 27,9
27,9 28,0 28,0 28,0 28,8 28,9 29,7 30,3 31,6 32,4
Для построения интервального вариационного ряда определим шаг выборки, воспользовавшись формулой Стерджесса:
.
Нижняя граница первого интервала определяется формулой:
.
Относительные частоты вычисляем по формуле:
.
Плотности относительных частот вычисляем по формуле:
.
Тогда получаем интервальный вариационный ряд:
Интервалы
6,9-9,7 8,3 1 0,006 0,006 0,0021
9,7-12,5 11,1 8 0,044 0,05 0,0157
12,5-15,3 13,9 24 0,133 0,183 0,0475
15,3-18,1 16,7 29 0,161 0,344 0,0575
18,1-20,9 19,5 45 0,25 0,594 0,0893
20,9-23,7 22,3 34 0,189 0,783 0,0675
23,7-26,5 25,1 22 0,122 0,905 0,0436
26,5-29,3 27,9 13 0,072 0,977 0,0257
29,3-32,1 30,7 3 0,017 0,994 0,0061
32,1-34,9 33,5 1 0,006 1 0,0021
180 1
Здесь - накопленные относительные частоты.
Для построения гистограммы относительных частот на оси абсцисс откладываем значения интервалов вариант, на оси ординат – соответствующие плотности относительных частот . Для построения полигона относительных частот на оси абсцисс откладываем значения вариант , на оси ординат – соответствующие относительные частоты . Для построения эмпирической функции распределения (кумуляты) на оси абсцисс откладываем значения вариант , на оси ординат – соответствующие накопленные относительные частоты . Тогда гистограмма относительных частот (синие столбики), полигон относительных частот (красная линия) и кумулята (зеленая линия) имеют вид:
Составим расчетную таблицу:
8,3 1 8,3 135,7225 -1581,167125 18420,59701
11,1 8 88,8 626,58 -5545,233 49075,31205
13,9 24 333,6 878,46 -5314,683 32153,83215
16,7 29 484,3 306,3125 -995,515625 3235,425781
19,5 45 877,5 9,1125 -4,100625 1,84528125
22,3 34 758,2 187,765 441,24775 1036,932212
25,1 22 552,2 583,495 3004,99925 15475,74614
27,9 13 362,7 821,6325 6531,978375 51929,22808
30,7 3 92,1 346,6875 3726,890625 40064,07422
33,5 1 33,5 183,6025 2487,813875 33709,87801
180 3591,2 4079,37 2752,2305 245102,8709
Вычислим выборочное среднее арифметическое по формуле:
.
Найдем выборочную исправленную дисперсию по формуле:
.
Найдем выборочное исправленное среднее квадратичное отклонение по формуле:
.
Коэффициент вариации определяется формулой:
%%%.
Коэффициент асимметрии определяется формулой:
.
Коэффициент эксцесса определяется формулой:
.
Мода – это наиболее часто повторяющееся значение признака. В данном случае
Медиана - это значение признака, которое делит вариационный ряд пополам. В данном случае .
Выдвинем гипотезу о нормальном распределении генеральной совокупности с параметрами и ...Посмотреть предложения по расчету стоимости
Заказчик
заплатил
заплатил
200 ₽
Заказчик не использовал рассрочку
Гарантия сервиса
Автор24
Автор24
20 дней
Заказчик принял работу без использования гарантии
10 мая 2017
Заказ завершен, заказчик получил финальный файл с работой
5
Для изучения структуры банков по размеру выданных в течение последнего года кредитов из 2000 банков РФ по схеме собственно-случайной бесповторной выборки отобрано 180 банков.docx
2021-05-24 10:00
Последний отзыв студента о бирже Автор24
Общая оценка
4.5
Положительно
Спасибо, Светлана! Работа оценена на "отлично", работа выполнена очень быстро и качественно. Рекомендую 👍