Создан заказ №2162478
4 июня 2017
математического программирования делятся на задачи линейного и нелинейного программирования
Как заказчик описал требования к работе:
Необходимо написать решение задач по программированию. Обращаюсь к авторам, у которых много работ по этой дисциплина. Прикрепляю пример и оформление доклада. Срок - 3 дня. 12 страниц печатного текста шрифт 14
Фрагмент выполненной работы:
математического программирования делятся на задачи линейного и нелинейного программирования. Если все функции f и gi - линейные, то соответствующая задачи является задачей линейного программирования (ЗЛП). Если хотя бы одна из указанные функций – нелинейная, то соответствующая задача является задачей нелинейного программирования.
Линейное программирование – область математики, разрабатывающая теорию и численные методы решения задач нахождения экстремума (максимума или минимума) линейной функции многих переменных при наличии линейных ограничений, т.е. (работа была выполнена специалистами author24.ru) линейных равенств или неравенств, связывающих эти переменные. К задачам линейного программирования сводится широкий круг вопросов планирования экономических процессов, где ставится задача поиска наилучшего (оптимального) решения.
Среди задач нелинейного программирования наиболее глубоко изучены задачи выпуклого программирования. Это задачи, в результате решения которых определяется минимум выпуклой (или максимум вогнутой) функции, заданной на выпуклом замкнутом множестве.
В свою очередь, среди задач выпуклого программирования более подробно исследованы задачи квадратичного программирования. В результате решения таких задач требуется в общем случае найти максимум (или минимум) квадратичной функции при условии, что ее переменные удовлетворяют некоторой системе линейных неравенств или линейных уравнений либо некоторой системе, содержащей как линейные неравенства, так и линейные уравнения.
Отдельными классами задач математического программирования являются задачи целочисленного, параметрического и дробно-линейного программирования.
В общем виде задачи линейного программирования (ЗЛП) ставится следующим образом:
Необходимо найти вектор , максимизирующий линейную форму
(1)
и удовлетворяющий условиям
(2)
,(3)
где , , - действительные числа.
Линейная функция f(X) называется целевой функцией задачи. Условия (2) называются функциональными, а (3) – прямыми ограничениями задачи.
Вектор X=(x1 , x2, … xn ), компоненты которого удовлетворяют функциональным и прямым ограничениям задачи, будем называть планом, или допустимым решением ЗЛП.
Все допустимые решения образуют область определения задачи линейного программирования, или область допустимых решений.
Допустимое решение, максимизирующее целевую функцию f (X ), называется оптимальным планом задачи.
Будем считать, что ЗЛП записана в канонической форме, если ее целевая функция максимизируется, ограничения имеют вид равенств с неотрицательной правой частью и все переменные неотрицательные.
На практике хорошо зарекомендовали себя следующие модели, относящиеся к оптимизационным: определения оптимальной производственной программы; оптимального смешивания компонентов; оптимального раскроя; оптимального размещения предприятий некоторой отрасли на определенной территории; формирования оптимального портфеля ценных бумаг; транспортной задачи.
Для решения ЗЛП существует универсальный метод – метод последовательного улучшения плана, или симплекс-метод, который состоит из двух вычислительных процедур: симплекс-метода с естественным базисом и симплекс-метода с искусственным базисом (М-метод).
Выбор конкретной вычислительной процедуры осуществляется после приведения исходной задачи к каноническому виду задачи линейного программирования (КЗЛП):
В теории линейного программирования показано, что оптимальное решение ЗЛП связано с угловыми (крайними) точками многогранника решений, которым отвечают опорные планы (неотрицательные базисные решения системы уравнений КЗЛП). Каждый из опорных планов определяется системой m линейно независимых векторов, содержащихся в данной системе из n векторов А1,А2, …..Аn. Верхняя граница количества опорных планов, содержащихся в данной задаче, определяется числом сочетаний Cm.
ОСНОВНЫЕ ТЕОРЕМЫ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ
Теорема 1: Множество всех допустимых решений системы ограничений задачи линейного программирования, является выпуклым.
Теорема 2: Если существует, и при том единственное, оптимальное
Решение:
следует, что поиски оптимального решения можно ограничить перебором конечного числа угловых точек (их число меньше , где n - число неизвестных , а m – число ограничений), однако построение возможно только для двух и трёхмерных пространств, поэтому нужны аналитические методы, позволяющие находить координаты угловых точек.
Теорема 3: Если известно, что система векторов в разложении линейно независима и такова, что , где , то точка является угловой точкой многогранника решений.
Теорема 4: Если - угловая точка многогранника решений, то векторы в разложении , соответствующие положительным, являются линейно независимыми.
Следствие 1: Так как векторы имеют размерность m, то угловая точка многогранника решений имеет не более m положительных компонент .
Следствие 2: Каждой угловой точке многогранника решений соответствует линейно независимых векторов системы векторов
ПРОСТОЙ СИМПЛЕКС-МЕТОД.
1.1 Обоснование и описание вычислительной процедуры. Приведение задачи линейного программирования к стандартной форме.
Любая задача линейного программирования приводится к стандартной (канонической) форме основной задачи линейного программирования, которая формулируется следующим образом: найти неотрицательные значения переменных X1 , X2 , Xn , удовлетворяющих ограничениям в виде равенств:
A11X1 + A12X2 + … + A1nXn = B1;
A21X1 + A22X2 + … + A2nXn = B2;
……………………………………
Am1X1 + Am2X2 + … + AmnXn = Bm;
Xj ≥ 0, j=1,…,n
и обращающих в максимум линейную функцию этих переменных:
E = C1X1 + C2X2 + … + CnXn max
При этом также требуется, чтобы правые части равенств были неотрицательны, т.е. должны соблюдаться условия:
Bj ≥ 0, j=1,…,n
Приведение к стандартной форме необходимо, так как большинство методов решения задач линейного программирования разработано именно для стандартной формы. Для приведения к стандартной форме задачи линейного программирования может потребоваться выполнить следующие действия:
- перейти от минимизации целевой функции к ее максимизации;
- изменить знаки правых частей ограничений;
- перейти от ограничений-неравенств к равенствам;
- избавиться от переменных, не имеющих ограничений на знак.
Для решения нашей задачи воспользуемся симплекс-методом, так как этот метод предназначен для решения задач линейного программирования любой размерности.
СИМПЛЕКСНЫЙ МЕТОД РЕШЕНИЯ ЗАДАЧ.
Симплексный метод задач линейного программирования основан на переходе от одного опорного плана к другому, при котором значение целевой функции возрастает (при условии, что данная задача имеет оптимальный план, и каждый ее опорный план является невырожденным)...Посмотреть предложения по расчету стоимости
Заказчик
заплатил
заплатил
20 ₽
Заказчик не использовал рассрочку
Гарантия сервиса
Автор24
Автор24
20 дней
Заказчик принял работу без использования гарантии
5 июня 2017
Заказ завершен, заказчик получил финальный файл с работой
5
математического программирования делятся на задачи линейного и нелинейного программирования.jpg
2020-11-13 19:46
Последний отзыв студента о бирже Автор24
Общая оценка
4.3
Положительно
Это уже 3-я работа у автора. Выполнение превосходное. Отвечает на все вопросы, помогает разобраться.
Оценки: отлично.
Рекомендую!