Создан заказ №2185231
12 июня 2017
На выбор одна из 10 тем
Как заказчик описал требования к работе:
Необходимо написать реферат на одну из представленных тем. Темы размещены в файле "Задание".
Фрагмент выполненной работы:
Введение
Регрессионный анализ — метод моделирования измеряемых данных и исследования их свойств. Данные состоят из пар значений зависимой переменной (переменной отклика) и независимой переменной (объясняющей переменной). Регрессионная модель есть функция независимой переменной и параметров с добавленной случайной переменной. Параметры модели настраиваются таким образом, что модель наилучшим образом приближает данные. (работа была выполнена специалистами Автор 24) Критерием качества приближения (целевой функцией) обычно является среднеквадратичная ошибка: сумма квадратов разности значений модели и зависимой переменной для всех значений независимой переменной в качестве аргумента. Регрессионный анализ — раздел математической статистики и машинного обучения. Предполагается, что зависимая переменная есть сумма значений некоторой модели и случайной величины. Относительно характера распределения этой величины делаются предположения, называемые гипотезой порождения данных. Для подтверждения или опровержения этой гипотезы выполняются статистические тесты, называемые анализом остатков. При этом предполагается, что независимая переменная не содержит ошибок. Регрессионный анализ используется для прогноза, анализа временных рядов, тестирования гипотез и выявления скрытых взаимосвязей в данных.
Регрессионный анализ
Основная особенность регрессионного анализа: при его помощи можно получить конкретные сведения о том, какую форму и характер имеет зависимость между исследуемыми переменными.
Последовательность этапов регрессионного анализа
Рассмотрим кратко этапы регрессионного анализа.
Формулировка задачи. На этом этапе формируются предварительные гипотезы о зависимости исследуемых явлений.
Определение зависимых и независимых (объясняющих) переменных.
Сбор статистических данных. Данные должны быть собраны для каждой из переменных, включенных в регрессионную модель.
Формулировка гипотезы о форме связи (простая или множественная, линейная или нелинейная).
Определение функции регрессии (заключается в расчете численных значений параметров уравнения регрессии)
Оценка точности регрессионного анализа.
Интерпретация полученных результатов. Полученные результаты регрессионного анализа сравниваются с предварительными гипотезами. Оценивается корректность и правдоподобие полученных результатов.
Предсказание неизвестных значений зависимой переменной.
При помощи регрессионного анализа возможно решение задачи прогнозирования и классификации. Прогнозные значения вычисляются путем подстановки в уравнение регрессии параметров значений объясняющих переменных. Решение задачи классификации осуществляется таким образом: линия регрессии делит все множество объектов на два класса, и та часть множества, где значение функции больше нуля, принадлежит к одному классу, а та, где оно меньше нуля, - к другому классуПосмотреть предложения по расчету стоимости
Заказчик
заплатил
заплатил
200 ₽
Заказчик не использовал рассрочку
Гарантия сервиса
Автор24
Автор24
20 дней
Заказчик принял работу без использования гарантии
13 июня 2017
Заказ завершен, заказчик получил финальный файл с работой
5
На выбор одна из 10 тем.docx
2017-06-16 18:38
Последний отзыв студента о бирже Автор24
Общая оценка
5
Положительно
Работа выполнена качественно и прислана даже раньше срока. В следующий раз сразу выберу этого автора.