Рассчитай точную стоимость своей работы и получи промокод на скидку 200 ₽
Найди эксперта для помощи в учебе
Найти эксперта
+2
Пример заказа на Автор24
Студенческая работа на тему:
Надо начертить цапфу, эллипс и швеллер
Создан заказ №2258967
13 сентября 2017

Надо начертить цапфу, эллипс и швеллер

Как заказчик описал требования к работе:
Нужен аспирант или преподаватель, чтобы помочь сделать чертёж по геометрии, сроки очень сжатые. Отзовитесь, пожалуйста!
Заказчик
заплатил
500 ₽
Заказчик не использовал рассрочку
Гарантия сервиса
Автор24
20 дней
Заказчик принял работу без использования гарантии
14 сентября 2017
Заказ завершен, заказчик получил финальный файл с работой
5
Заказ выполнил
elektro45
5
скачать
Надо начертить цапфу, эллипс и швеллер.jpg
2017-12-26 15:08
Последний отзыв студента о бирже Автор24
Общая оценка
5
Положительно
Большое спасибо Станиславу за работу! все сделано раньше указанного срока, а самое главное - качественно. Буду дальше сотрудничать с автором!

Хочешь такую же работу?

Оставляя свои контактные данные и нажимая «Создать задание», я соглашаюсь пройти процедуру регистрации на Платформе, принимаю условия Пользовательского соглашения и Политики конфиденциальности в целях заключения соглашения.
Хочешь написать работу самостоятельно?
Используй нейросеть
Мы создали собственный искусственный интеллект,
чтобы помочь тебе с учебой за пару минут 👇
Использовать нейросеть
Тебя также могут заинтересовать
элементы конструктивной геометрии
Решение задач
Геометрия
Стоимость:
150 ₽
Проблемма сравнения узлов
Реферат
Геометрия
Стоимость:
300 ₽
НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ. ИНЖЕНЕРНАЯ ГРАФИКА
Чертёж
Геометрия
Стоимость:
300 ₽
Читай полезные статьи в нашем
Площадь. Формулы площади
Понятие площади многоугольника будем связывать с такой геометрической фигурой, как квадрат. За единицу площади многоугольника будем принимать площадь квадрата со стороной, равной единице. Введем два основных свойства, для понятия площади многоугольника.
Далее введем площади основных фигур планиметрии: квадрата, прямоугольника, параллелограмма, трапеции и треугольника без их вывода.
[Теорема] Площадь...
подробнее
Соотношение между сторонами и углами треугольника
Вначале рассмотрим непосредственно понятие треугольника.

Очевидно, что любой треугольник будет иметь 3 вершин, а также три стороны.
Введем следующую теорему.
Эта теорема имеет обратную теорему. Сформулируем и докажем ее.
Из этих двух теорем можно вывести два следствия. Приведем их также в виде теорем и докажем.
Отметим, что последняя теорема также называется признаком равнобедренного треугольника.
Приве...
подробнее
Прямоугольные треугольники
Вначале рассмотрим понятие произвольного треугольника.

Очевидно, что любой треугольник будет иметь 3 вершин, а также три стороны.
Теперь введем, непосредственно, понятие прямоугольного треугольника.
При этом стороны, которые прилегают к прямому углу, будут называться катетами, а третья сторона – гипотенузой (рис. 2).

Как и для любого треугольника, для прямоугольного справедлива следующая теорема:
Сформ...
подробнее
Построение треугольника по трем элементам
В геометрии довольно распространены так называемые задачи на построение. Их суть заключается в том, чтобы построить какой-либо геометрический объект по какому-либо достаточному набору начальных условий имея под рукой только циркуль и линейку. Рассмотрим общую схему для выполнения таких задач:
Далее будем рассматривать задачи на построение треугольников по различным трем элементам. Здесь мы не будем...
подробнее
Площадь. Формулы площади
Понятие площади многоугольника будем связывать с такой геометрической фигурой, как квадрат. За единицу площади многоугольника будем принимать площадь квадрата со стороной, равной единице. Введем два основных свойства, для понятия площади многоугольника.
Далее введем площади основных фигур планиметрии: квадрата, прямоугольника, параллелограмма, трапеции и треугольника без их вывода.
[Теорема] Площадь...
подробнее
Соотношение между сторонами и углами треугольника
Вначале рассмотрим непосредственно понятие треугольника.

Очевидно, что любой треугольник будет иметь 3 вершин, а также три стороны.
Введем следующую теорему.
Эта теорема имеет обратную теорему. Сформулируем и докажем ее.
Из этих двух теорем можно вывести два следствия. Приведем их также в виде теорем и докажем.
Отметим, что последняя теорема также называется признаком равнобедренного треугольника.
Приве...
подробнее
Прямоугольные треугольники
Вначале рассмотрим понятие произвольного треугольника.

Очевидно, что любой треугольник будет иметь 3 вершин, а также три стороны.
Теперь введем, непосредственно, понятие прямоугольного треугольника.
При этом стороны, которые прилегают к прямому углу, будут называться катетами, а третья сторона – гипотенузой (рис. 2).

Как и для любого треугольника, для прямоугольного справедлива следующая теорема:
Сформ...
подробнее
Построение треугольника по трем элементам
В геометрии довольно распространены так называемые задачи на построение. Их суть заключается в том, чтобы построить какой-либо геометрический объект по какому-либо достаточному набору начальных условий имея под рукой только циркуль и линейку. Рассмотрим общую схему для выполнения таких задач:
Далее будем рассматривать задачи на построение треугольников по различным трем элементам. Здесь мы не будем...
подробнее
Теперь вам доступен полный отрывок из работы
Также на e-mail вы получите информацию о подробном расчете стоимости аналогичной работы