Создан заказ №2383920
3 ноября 2017
Операции над матрицами и их свойства.
Как заказчик описал требования к работе:
Необходимо написать реферат по высшей математике. Обращаюсь к авторам, у которых много работ по этой дисциплина. Прикрепляю пример и оформление доклада. Срок - 3 дня. 12 страниц печатного текста шрифт 14
Фрагмент выполненной работы:
Введение
Матрица — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля (например, целых или комплексных чисел), которая представляет собой совокупность строк и столбцов, на пересечении которых находятся её элементы. Количество строк и столбцов матрицы задают размер матрицы. Хотя исторически рассматривались, например, треугольные матрицы, в настоящее время говорят исключительно о матрицах прямоугольной формы, так как они являются наиболее удобными и общими.
Матрицы широко применяются в математике для компактной записи систем линейных алгебраических или дифференциальных уравнений. (работа была выполнена специалистами author24.ru) В этом случае, количество строк матрицы соответствует числу уравнений, а количество столбцов — количеству неизвестных. В результате, решение систем линейных уравнений сводится к операциям над матрицами.
Матрицы допускают следующие алгебраические операции:
сложение матриц, имеющих один и тот же размер;
умножение матриц подходящего размера (матрицу, имеющую n столбцов, можно умножить справа на матрицу, имеющую n строк);
умножение матрицы на элемент основного кольца или поля (т. н. скаляр).
Относительно сложения матрицы образуют абелеву группу; если же рассматривать ещё и умножение на скаляр, то матрицы образуют модуль над соответствующим кольцом (векторное пространство над полем). Множество квадратных матриц замкнуто относительно матричного умножения, поэтому квадратные матрицы одного размера образуют ассоциативное кольцо с единицей относительно матричного сложения и матричного умножения.
Матрица представляет собой матрицу некоторого линейного оператора: свойства матрицы соответствуют свойствам линейного оператора. В частности, собственные числа матрицы — это собственные числа оператора, отвечающие соответствующим собственным векторам.
В математике рассматривается множество различных типов и видов матриц. Таковы, например, единичная, симметричная, кососимметричная, верхнетреугольная (нижнетреугольная) и т. п. матрицы.
Особое значение в теории матриц занимают всевозможные нормальные формы, то есть канонический вид, к которому можно привести матрицу заменой координат. Наиболее важной (в теоретическом значении) и проработанной является теория жордановых нормальных форм. На практике, однако, используются такие нормальные формы, которые обладают дополнительными свойствами, например, устойчивостьюПосмотреть предложения по расчету стоимости
Заказчик
заплатил
заплатил
200 ₽
Заказчик не использовал рассрочку
Гарантия сервиса
Автор24
Автор24
20 дней
Заказчик принял работу без использования гарантии
4 ноября 2017
Заказ завершен, заказчик получил финальный файл с работой
5
Операции над матрицами и их свойства..docx
2019-01-13 20:04
Последний отзыв студента о бирже Автор24
Общая оценка
5
Положительно
Отличный автор, рекомендую! Работу нужно было выполнить за пол дня, автор успешно сделал за два часа. Работа без замечаний! Спасибо!