Создан заказ №2662788
29 января 2018
Короткий чугунный брус поперечное сечение которого показано на рисунке 1 сжимается силой Р
Как заказчик описал требования к работе:
Нужен аспирант или преподаватель, чтобы помочь сделать решение задач по сопротивлению материалов, сроки очень сжатые. Отзовитесь, пожалуйста!
Фрагмент выполненной работы:
Короткий чугунный брус, поперечное сечение которого показано на рисунке 1, сжимается силой Р, приложенной в точке А.
Требуется:
1) вычислить наибольшие растягивающие и сжимающие напряжения в его поперечном сечении, выразив их через величину сжимающей силы Р;
2) из условия прочности бруса найти допускаемую нагрузку Рдоп, если заданы пределы прочности для чугуна на растяжение σвр и сжатие σвс. Запас прочности принять п = 1,5.
Дано: а=0,08 м; b=0,14 м; α=0,5; β=0,5; σвр =120 МПа; σвс =500 МПа; n =1,5.
Рисунок 1 – Расчетное сечение
Решение:
.Определение геометрических характеристик поперечного сечения.
Заданное сечение (рисунок 1) рассматриваем как сложное, состоящее из трех фигур: большого сплошного прямоугольника со сторонами a и b и двух сквозных окружностей с диаметром 0,5a.
Заданное сечение имеет две оси симметрии, которые являются главными центральными осями. (работа была выполнена специалистами Автор 24) Так фигура имеет две оси симметрии, центр тяжести лежит на их пересечении точка О, то вычислений для определения его положения производить не нужно. Ось абсцисс y совмещаем с осью симметрии и ось ординат z – с осью симметрии (рисунок 2).
Площади составляющих фигур:
м2;
м2.
Площадь сечения всей фигуры:
м2.
Главные центральные моменты инерции составного сечения относительно осей y, z вычисляются с помощью зависимостей между моментами инерции относительно параллельных осей, одна из которых центральная:
;
.
Моменты инерции прямоугольников относительно собственных главных центральных осей равны:
м4;
м4;
м4.
Расстояние между главной центральной осью y и осями y1,y2,y3: a1 = a2 = 0 (рисунок 2), так как главные центральные оси y1, y2 и y3 составляющих фигур совпадают с главной центральной осью y сечения; расстояние между осями z и z1: b1 = 0, так как оси z и z1 совпадают; расстояния между главной центральной осью z и осями z2, z3:
м.
Подставив найденные величины в формулы для вычисления главных центральных моментов инерции и учитывая, что осевой момент инерции отверстия условно считается отрицательным, получаем:
м4;
м4.
Квадраты главных центральных радиусов инерции:
м2;
м2.
2. Определение положения нулевой линии.
По условию задачи сила Р приложена в точке А, координаты которой в системе главных центральных осей y, z определяются по рисунку 2:
м; м.
Отрезки, отсекаемые нулевой линией на осях координат y, z:
м;
м.
3...Посмотреть предложения по расчету стоимости
Заказчик
заплатил
заплатил
20 ₽
Заказчик не использовал рассрочку
Гарантия сервиса
Автор24
Автор24
20 дней
Заказчик принял работу без использования гарантии
30 января 2018
Заказ завершен, заказчик получил финальный файл с работой
5
Короткий чугунный брус поперечное сечение которого показано на рисунке 1 сжимается силой Р.jpg
2019-07-03 22:54
Последний отзыв студента о бирже Автор24
Общая оценка
5
Положительно
Задачи сделаны в срок с промежуточными ответами. Оформление на высшем уровне, понятно и разборчиво