Создан заказ №3117096
15 июня 2018
ИДЗ №2 Множественная регрессия По 20 предприятиям региона изучается зависимость выработки продукции на одного работника y (тыс
Как заказчик описал требования к работе:
Задание: сделать решение задач по эконометрике за 2 дня, красиво оформить. Сколько стоит решение задач пишите точно.
Фрагмент выполненной работы:
ИДЗ №2
Множественная регрессия
По 20 предприятиям региона изучается зависимость выработки продукции на одного работника y (тыс. руб.) от ввода в действие новых основных фондов x1 (% от стоимости фондов на конец года) и от удельного веса рабочих высокой квалификации в общей численности рабочих x2 (%)
y x1 x2
1 7 =3,6+0,1*11 11
2 8 3,7 13
3 9 =3,8+0,1*11 17
4 10 4,8 19
5 11 5,3 20
6 12 5,4 21
7 12 =5,6-0,1*11 22
8 14 =6+0,1*11 25
9 14 =8-0,1*11 28
10 14 =9+0,1*11 31
Требуется:
Построить линейную модель множественной регрессии. (работа была выполнена специалистами author24.ru) Записать экономический смысл полученных параметров регрессии.
На основе средних коэффициентов эластичности ранжировать факторы по степени их влияния на результат.
Найти коэффициенты парной, частной и множественной корреляции. Проанализировать их.
С помощью F-критерия Фишера оценить статистическую надежность уравнения регрессии и коэффициента детерминации.
Решение:
Для удобства проведения расчетов поместим результаты промежуточных расчетов в таблицу:
№
1 7 4,7 11 32,90 77,0 51,70 22,09 121 49
2 8 3,7 13 29,60 104,0 48,10 13,69 169 64
3 9 4,9 17 44,10 153,0 83,30 24,01 289 81
4 10 4,8 19 48,00 190,0 91,20 23,04 361 100
5 11 5,3 20 58,30 220,0 106,00 28,09 400 121
6 12 5,4 21 64,80 252,0 113,40 29,16 441 144
7 12 4,5 22 54,00 264,0 99,00 20,25 484 144
8 14 7,1 25 99,40 350,0 177,50 50,41 625 196
9 14 6,9 28 96,60 392,0 193,20 47,61 784 196
10 14 10,1 31 141,40 434,0 313,10 102,01 961 196
Сумма 111,00 57,40 207,00 669,10 2436,00 1276,50 360,36 4635,00 1291,00
Ср. знач. 11,10 5,74 20,70 66,91 243,60 127,65 36,04 463,50 129,10
Найдем средние квадратические отклонения признаков:
Построим уравнение множественной регрессии.
Определим вектор оценок коэффициентов регрессии. Согласно методу наименьших квадратов, вектор s получается из выражения: s = (XTX)-1XTY
К матрице с переменными Xj добавляем единичный столбец:
, Матрица Y:
Матрица XT:
Умножаем матрицы, (XTX):
В матрице, (XTX) число 10, лежащее на пересечении 1-й строки и 1-го столбца, получено как сумма произведений элементов 1-й строки матрицы XT и 1-го столбца матрицы X
Умножаем матрицы, (XTY)
Находим обратную матрицу (XTX)-1
Вектор оценок коэффициентов регрессии равен:
Уравнение регрессии (оценка уравнения регрессии)
Экономический смысл полученных параметров регрессии: с увеличением ввода в действие основных фондов на 1 % объем выработки на одного работника у уменьшается в среднем на 0,34 тыс. руб. при неизменном значении удельного веса рабочих высокой квалификации в общей численности рабочих. При увеличении удельного веса рабочих высокой квалификации в общей численности рабочих на 1% объем выработки на одного работника у увеличивается в среднем на 0,48 тыс. руб. при неизменном значении ввода в действие основных фондов.
2. На основе средних коэффициентов эластичности ранжируем факторы по степени их влияния на результат.
Т.е. увеличение только основных фондов (от своего среднего значения) или только удельного веса рабочих высокой квалификации на 1% изменяет в среднем выработку продукции на -0,176% или +0,897% соответственно.
Таким образом, наблюдается большее влияние на результат фактора, чем фактора .
3. Найдем коэффициенты парной, частной и множественной корреляции.
Рассчитаем сначала парные коэффициенты корреляции:
Они указывают на весьма сильную связь каждого фактора с результатом, а также высокую межфакторную зависимость (факторы и явно коллинеарны, т.к. 0,849 > 0.7). При такой сильной межфакторной зависимости рекомендуется один из факторов исключить из рассмотрения.
Частные коэффициенты корреляции характеризуют тесноту связи между результатом и соответствующим фактором при элиминировании (устранении влияния) других факторов, включенных в уравнение регрессии.
При двух факторах частные коэффициенты корреляции рассчитываются следующим образом:
Если сравнить коэффициенты парной и частной корреляции, то можно увидеть, что из-за высокой межфакторной зависимости коэффициенты парной корреляции дают завышенные оценки тесноты связи...Посмотреть предложения по расчету стоимости
Заказчик
заплатил
заплатил
20 ₽
Заказчик не использовал рассрочку
Гарантия сервиса
Автор24
Автор24
20 дней
Заказчик принял работу без использования гарантии
16 июня 2018
Заказ завершен, заказчик получил финальный файл с работой
5
ИДЗ №2
Множественная регрессия
По 20 предприятиям региона изучается зависимость выработки продукции на одного работника y (тыс.jpg
2020-06-21 12:59
Последний отзыв студента о бирже Автор24
Общая оценка
4.6
Положительно
Анастасия- мега классная. Работа была выполнена качественно и очень быстро, да еще и на максимальный балл! Огромный плюс, что Анастасия дает быструю обратную связь. Спасибо!