Создан заказ №3404481
2 декабря 2018
Для определения коэффициента линейного расширения стали необходимо установить зависимость длины образца от температуры L=L0· ( 1 + α·T)
Как заказчик описал требования к работе:
Нужно выполнить контрольную по метрологии. Есть 6 задач и 3 теор.вопроса, срок - к 23-ему числу. Оплату обсудим в личном диалоге.
Фрагмент выполненной работы:
Для определения коэффициента линейного расширения стали необходимо установить зависимость длины образца от температуры L=L0· ( 1 + α·T). Или удлинение образца ΔL = α·L0·T. Где L0 – длина образца при Т = 20°С; α – коэффициент линейного расширения (1/°С).
Экспериментальные результаты Ti; Li, приведенные в табл.1, отличаются от истинных координат Т, L из-за систематических и случайных погрешностей. (работа была выполнена специалистами Автор 24) Для аппроксимации экспериментальной линейной зависимости применить метод наименьших квадратов. Определить среднеквадратичное отклонение погрешности измерения длины и коэффициента линейного расширения.
Таблица 1
Шифр 6
Темп. С° Длина образца Li ; мм
20 80,00
100 80,09
150 80,14
200 80,20
300 80,30
400 80,41
500 80,52
Решение:
Сущность метода заключается в том, что наивероятнейшими значениями аргументов искомой аналитической зависимости будут такие, при которых сумма квадратов отклонений экспериментальных значений функции от самой исследуемой функции будет наименьшей:
.
Искомая функциональная зависимость имеет линейный характер
y=a+bx.
График функции представляет прямую линию с коэффициентом b=tg, пересекающая ось ординат в точке y=a.
В соответствии с методом наименьших квадратов искомым постоянным соответствует минимальное значение выражения (1.1):
i=1nyi-y2=i=1nyi-a+b∙xi2 (1.1)
Можно показать:
a=S2∙S3-S1∙S4S5, b=n∙S4-S1∙S3S5, (1.2)
Здесь:
S1=i=1nxi ; S2=i=1nxi2; S3=i=1nyi ;S4=i=1nxi∙yi ;S5=n∙S2-S12 , (1.3)
где xi – значение температуры в i-ом эксперименте (Ti ), °С; yi – значение величины изменения длины образца в i-ом эксперименте (Δ Li), м; n – количество экспериментов.
Степень приближения найденных значений коэффициентов к истинным значениям оценивается с помощью стандартного отклонения σa, σb:
σa=σyS2/S5 (1.4)
σb=σyn/S5 (1.5)
σy=i=1nyi-a+b∙xi2n-2 (1.6)
где σу – стандартное отклонение погрешности измерения величины y (выбирается по паспорту на средство измерения или определяется по указанной формуле (1.6)).
Таким образом:
S1=i=1nxi=20+100+150+200+300+400+500=1670 ℃.
S2=i=1nxi2=202+1002+1502+2002+3002+4002+5002=
=572900 ℃2.
S3=i=1nyi=0+0,09+0,14+0,2+0,3+0,41+0,52=
=1,66 мм.
S4=i=1nxi∙yi=20*0+100*0,09+…400*0,41+500*0,52=
=584 ℃*мм.
S5=n∙S2-S12=7*572900-16702=1221...Посмотреть предложения по расчету стоимости
Заказчик
заплатил
заплатил
200 ₽
Заказчик не использовал рассрочку
Гарантия сервиса
Автор24
Автор24
20 дней
Заказчик принял работу без использования гарантии
3 декабря 2018
Заказ завершен, заказчик получил финальный файл с работой
5
Для определения коэффициента линейного расширения стали необходимо установить зависимость длины образца от температуры L=L0· ( 1 + α·T).docx
2019-06-16 23:26
Последний отзыв студента о бирже Автор24
Общая оценка
4
Положительно
Отличный автор! Работа сделана раньше срока, корректировки сделаны очень оперативно!