Создан заказ №3811253
1 апреля 2019
Постройте гистограмму частот найдите среднюю заработную плату работников одного из цехов промышленного предприятия (в условных денежных единицах)
Как заказчик описал требования к работе:
1. Постройте гистограмму частот, найдите среднюю заработную плату работников одного из цехов промышленного предприятия (в условных денежных единицах):
Интервалы заработной платы 250–299 300–349 350–399 400–449 450–490 500–549
Число работников 12 23 37 19 15 9
Найдите среднее квадратическое отклон
ение, моду, медиану. Проверьте симметричность распределения с помощью коэффициентов асимметрии и эксцесса.
2. В универсаме еженедельно продается в среднем 1520 картонных упаковок куриных яиц. Для оценки возможной компенсации за поврежденные яйца в поступающих партиях яиц проводится регулярная случайная еженедельная выборка 100 упаковок. Если в поступившей партии найдено 12 упаковок с поврежденными яйцами, то оцените с вероятностью 0,95 их долю в партии, состоящей из 1520 упаковок.
3. Используются два вида удобрений: I и II. Для сравнения их эффективности были попарно выбраны 20 участков равной площади так, что пару составили участки, однородные по плодородию. Десять участков были обработаны удобрением I, а десять, парных им, – удобрением II. На соответствующих парах участков получили следующий урожай:
№ 1 2 3 4 5 6 7 8 9 10
I 8,0 8,4 8,0 6,4 8,6 7,7 7,7 5,6 5,6 6,2
II 5,6 7,4 7,3 6,4 7,5 6,1 6,6 6,0 5,5 5,0
При уровне значимости 5% проверить гипотезу о различном влиянии использования удобрения I или II.
подробнее
Фрагмент выполненной работы:
Постройте гистограмму частот, найдите среднюю заработную плату работников одного из цехов промышленного предприятия (в условных денежных единицах):
Таблица 1.
Интервалы заработной платы 250–299 300–349 350–399 400–449 450–499 500–549
Число работников 12 23 37 19 15 9
Найдите среднее квадратическое отклонение, моду, медиану. Проверьте симметричность распределения с помощью коэффициентов асимметрии и эксцесса.
Решение.
Построим гистограмму частот – это совокупность прямоугольников, снования которых интервалы заработной платы (ЗП) работников , а высоты равны числу работников в соответствующем интервале ЗП.
Рис.1. (работа была выполнена специалистами Автор 24) Гистограмма частот.
Найдем среднюю ЗП, для этого перейдем от интервального ряда к вариационному, взяв в качестве вариант середины интервалов: .
Составим вспомогательную расчетную таблицу
Таблица 2- Расчетная.
250–299 300–349 350–399 400–449 450–499 500–549
275 325 375 425 475 525
12 23 37 19 15 9 115
3300 7475 13875 8075 7125 4725 44575
-112,608696 -62,6086957 -12,6086957 37,3913043 87,39130435 137,391304 74,34782609
152168,62 90156,52174 5882,230624 26564,0832 114558,6011 169887,335 559217,3913
-17135509,8 -5644582,23 -74167,2557 993265,719 10011425,58 23341042,5 11491474,48
1929607410 353399931 935152,3544 37139500,8 874911539,6 3206856273 6402849807
Средняя заработная плата равна выборочному среднему , где - объем выборки.
.
Вычислим выборочную дисперсию , тогда среднее квадратическое отклонение условных денежных единиц.
Найдем моду и медиану. Рассмотрим интервальный ряд (таблица 1).
Для вычисления моды применим формулу:
, где – нижняя граница модального интервала (модальным называется интервал, имеющий наибольшую частоту); – величина модального интервала; – частота модального интервала; – частота интервала, предшествующего модальному; – частота интервала, следующего за модальным.
Тогда , , , , .
. условных денежных единиц.
Вычислим медиану по формуле
где – нижняя граница медианного интервала (медианным называется первый интервал, накопленная частота которого превышает половину общей суммы частот); – величина медианного интервала;
– накопленная частота интервала, предшествующего медианному; – частота медианного интервала.
Имеем , , , тогда , , , .
условных денежных единиц.
Симметричным является распределение, в котором частоты любых двух вариантов, равностоящих в обе стороны от центра распределения, равны между собой.
Наиболее точным и распространенным показателем асимметрии является моментный коэффициент асимметрии .
Вычислим . Положительная величина указывает на наличие правосторонней асимметрии (что просматривается на гистограмме рис.1.)
Эксцесс представляет собой выпад вершины эмпирического распределения вверх или вниз от вершины кривой нормального распределения. Эксцесс найдем по формуле:
.
Для распределений более островершинных (вытянутых), чем нормальное, показатель эксцесса положительный ( > 0), для более плосковершинных (сплюснутых) - отрицательный ( < 0) . Значит имеем плосковершинное распределение.
Решение:
рис.1, средняя заработная плата 387,61 условных денежных единиц, среднее квадратическое отклонение условных денежных единиц, мода условных денежных единиц, медиана условных денежных единиц, асимметрия , эксцесс , значит имеем правостороннюю асимметрию и сплюснутость распределения.
2. В универсаме еженедельно продается в среднем 1520 картонных упаковок куриных яиц. Для оценки возможной компенсации за поврежденные яйца в поступающих партиях яиц проводится регулярная случайная еженедельная выборка 100 упаковок...Посмотреть предложения по расчету стоимости
Заказчик
заплатил
заплатил
20 ₽
Заказчик не использовал рассрочку
Гарантия сервиса
Автор24
Автор24
20 дней
Заказчик принял работу без использования гарантии
2 апреля 2019
Заказ завершен, заказчик получил финальный файл с работой
5
Постройте гистограмму частот найдите среднюю заработную плату работников одного из цехов промышленного предприятия (в условных денежных единицах).jpg
2019-04-05 22:58
Последний отзыв студента о бирже Автор24
Общая оценка
5
Положительно
Отлично справился, все сделал раньше срока и даже раньше чем сам обещал. Общительный автор. Спасибо большое)