Рассчитай точную стоимость своей работы и получи промокод на скидку 200 ₽
Найди эксперта для помощи в учебе
Найти эксперта
+2
Пример заказа на Автор24
Студенческая работа на тему:
Найти координаты основания перпендикуляра опущенного из точки A(-1
Создан заказ №3876944
16 апреля 2019

Найти координаты основания перпендикуляра опущенного из точки A(-1

Как заказчик описал требования к работе:
Найти координаты основания перпендикуляра, опущенного из точки A(-1, 2, 3), на плоскость 2X+3Y-Z+5=0.
Фрагмент выполненной работы:
Найти координаты основания перпендикуляра, опущенного из точки A(-1, 2, 3), на плоскость 2X+3Y-Z+5=0. Решение: Искомая точка – точка пересечения данной плоскости с прямой проходящей через точку A(-1, 2, 3), перпендикулярно этой плоскости. Исходя из условия перпендикулярности прямой и плоскости, следует, что нормальный вектор плоскости N=2,3,-1 является направляющий вектор прямой. Следовательно, уравнение прямой имеет вид x=-1+2t,y=2+3t,z=3-t. Тогда искомая точка определится из ..Посмотреть предложения по расчету стоимости
Зарегистрируйся, чтобы получить больше информации по этой работе
Заказчик
заплатил
20 ₽
Заказчик не использовал рассрочку
Гарантия сервиса
Автор24
20 дней
Заказчик принял работу без использования гарантии
17 апреля 2019
Заказ завершен, заказчик получил финальный файл с работой
5
Заказ выполнил
NEO49
5
скачать
Найти координаты основания перпендикуляра опущенного из точки A(-1.jpg
2019-04-20 14:20
Последний отзыв студента о бирже Автор24
Общая оценка
5
Положительно
Заказывай у автора уже не в первый раз, все вовремя, бывают недочеты, но все исправляется в срок. Спасибо

Хочешь такую же работу?

Оставляя свои контактные данные и нажимая «Создать задание», я соглашаюсь пройти процедуру регистрации на Платформе, принимаю условия Пользовательского соглашения и Политики конфиденциальности в целях заключения соглашения.
Хочешь написать работу самостоятельно?
Используй нейросеть
Мы создали собственный искусственный интеллект,
чтобы помочь тебе с учебой за пару минут 👇
Использовать нейросеть
Тебя также могут заинтересовать
Различные системы координат в пространстве
Курсовая работа
Геометрия
Стоимость:
700 ₽
Тензорный анализ и его приложения
Реферат
Геометрия
Стоимость:
300 ₽
геометрия (контрольная работа)
Решение задач
Геометрия
Стоимость:
150 ₽
Теория и история задачи о квадратуре круга
Курсовая работа
Геометрия
Стоимость:
700 ₽
теорема Вариньона
Решение задач
Геометрия
Стоимость:
150 ₽
Геометрические фигуры и тела.
Реферат
Геометрия
Стоимость:
300 ₽
логические задачи по математике 9 класс
Решение задач
Геометрия
Стоимость:
150 ₽
Методы изображений
Решение задач
Геометрия
Стоимость:
150 ₽
Задачи на построение
Решение задач
Геометрия
Стоимость:
150 ₽
Решение задач
Решение задач
Геометрия
Стоимость:
150 ₽
Допустим, точки C(- 1; 4) D(3; 8) и E(6; 10) являются вершинами треуго
Решение задач
Геометрия
Стоимость:
150 ₽
Читай полезные статьи в нашем
Теорема Пифагора
Для начала введем сведения и обозначения, которые будут необходимы нам в дальнейшем.
Будем рассматривать прямоугольный треугольник ABC с длинами катетов, равными BC=a и AC=b и длиной гипотенузы, равной AB=c (рис. 1).

Рисунок 1.
Введем без доказательств теоремы о площади квадрата и треугольника.
Теперь введем и докажем теорему, которая носит название теоремы Пифагора.
подробнее
Площади и объемы
История нахождения площадей фигур начинается еще с древнего Вавилона. Уже тогда вычисляли площади прямоугольника, а древние египтяне пользовались методами вычисления площадей различных фигур, похожими на наши методы.
В своих книгах «Начала» известный древнегреческий математик Евклид описывал достаточно большое число способов вычисления площадей многих геометрических фигур. Первые рукописи на Руси, ...
подробнее
Прямоугольные треугольники
Вначале рассмотрим понятие произвольного треугольника.

Очевидно, что любой треугольник будет иметь 3 вершин, а также три стороны.
Теперь введем, непосредственно, понятие прямоугольного треугольника.
При этом стороны, которые прилегают к прямому углу, будут называться катетами, а третья сторона – гипотенузой (рис. 2).

Как и для любого треугольника, для прямоугольного справедлива следующая теорема:
Сформ...
подробнее
Движение
Перед тем, как ввести понятие движения в пространстве, надо ввести определение отображения пространства на себя.
Введем теперь, непосредственно, определение движения.
Пример – рисунок 1.

Введем теперь несколько теорем, связанных с понятием движения без доказательства.
Основными примерами движений являются центральная, осевая и зеркальная симметрии. Рассмотрим их более подробно.
Перед тем, как определит...
подробнее
Теорема Пифагора
Для начала введем сведения и обозначения, которые будут необходимы нам в дальнейшем.
Будем рассматривать прямоугольный треугольник ABC с длинами катетов, равными BC=a и AC=b и длиной гипотенузы, равной AB=c (рис. 1).

Рисунок 1.
Введем без доказательств теоремы о площади квадрата и треугольника.
Теперь введем и докажем теорему, которая носит название теоремы Пифагора.
подробнее
Площади и объемы
История нахождения площадей фигур начинается еще с древнего Вавилона. Уже тогда вычисляли площади прямоугольника, а древние египтяне пользовались методами вычисления площадей различных фигур, похожими на наши методы.
В своих книгах «Начала» известный древнегреческий математик Евклид описывал достаточно большое число способов вычисления площадей многих геометрических фигур. Первые рукописи на Руси, ...
подробнее
Прямоугольные треугольники
Вначале рассмотрим понятие произвольного треугольника.

Очевидно, что любой треугольник будет иметь 3 вершин, а также три стороны.
Теперь введем, непосредственно, понятие прямоугольного треугольника.
При этом стороны, которые прилегают к прямому углу, будут называться катетами, а третья сторона – гипотенузой (рис. 2).

Как и для любого треугольника, для прямоугольного справедлива следующая теорема:
Сформ...
подробнее
Движение
Перед тем, как ввести понятие движения в пространстве, надо ввести определение отображения пространства на себя.
Введем теперь, непосредственно, определение движения.
Пример – рисунок 1.

Введем теперь несколько теорем, связанных с понятием движения без доказательства.
Основными примерами движений являются центральная, осевая и зеркальная симметрии. Рассмотрим их более подробно.
Перед тем, как определит...
подробнее
Теперь вам доступен полный отрывок из работы
Также на e-mail вы получите информацию о подробном расчете стоимости аналогичной работы