Создан заказ №4255611
20 ноября 2019
Алгоритмы метода главных компонент
Как заказчик описал требования к работе:
Нужен аспирант или преподаватель, чтобы помочь сделать реферат по статистике, сроки очень сжатые. Отзовитесь, пожалуйста!
Фрагмент выполненной работы:
ВВЕДЕНИЕ
Метод главных компонент (Principal Component Analysis, PCA) применяется для сжатия информации [1] без существенных потерь информативности. Он состоит в линейном ортогональном преобразовании входного вектора X размерности N в выходной вектор Y размерности M, N. При этом компоненты вектора Y являются некоррелированными и общая дисперсия после преобразования остаётся неизменной. Матрица X состоит из всех примеров изображений обучающего набора. (работа была выполнена специалистами Автор 24)
Решив уравнение , получаем матрицу собственных векторов , где – ковариационная матрица для X, а – диагональная матрица собственных чисел. Выбрав из подматрицу , соответствующую M наибольшим собственным числам, получим, что преобразование , где – нормализованный вектор с нулевым математическим ожиданием, характеризует большую часть общей дисперсии и отражает наиболее существенные изменения X.
Выбор первых M главных компонент разбивает векторное пространство на главное (собственное) пространство , содержащее главные компоненты, и его ортогональное дополнение .
Применение для задачи распознавания изображений имеет следующий вид. Входные вектора представляют собой отцентрированные и приведённые к единому масштабу изображения. Собственные вектора, вычисленные для всего набора изображений, называются собственными объектами (eigenobject). С помощью вычисленных ранее матриц входное изображение разлагается на набор линейных коэффициентов, называемых главными компонентами. Сумма главных компонент, умноженных на соответствующие собственные вектора, является реконструкцией изображения.
Для каждого изображения лица вычисляются его главные компоненты. Обычно берётся от 5 до 200 главных компонент. Остальные компоненты кодируют мелкие различия между эталоном и шум. Процесс распознавания заключается в сравнении главных компонент неизвестного изображения с компонентами всех остальных изображений. Для этого обычно применяют какую-либо метрику (простейший случай – Евклидово расстояние). При этом предполагается, что изображения, соответствующие одному эталону, сгруппированы в кластеры в собственном пространстве. Из базы данных (или тренировочного набора) выбираются изображения-кандидаты, имеющие наименьшее расстояние от входного (неизвестного) изображения.
Дальнейшее совершенствование заключалось в использовании метрики Махаланобиса и Гауссовского распределения для оценки близости изображений. Для учёта различных ракурсов в этой же работе использовалось многомодальное распределение изображений в собственном пространстве.
Основное преимущество применения анализа главных компонент – это хранение и поиск изображений в больших базах данных, реконструкция изображений.
Основной недостаток – высокие требования к условиям съёмки изображений. Изображения должны быть получены в близких условиях освещённости, одинаковом ракурсе. Должна быть проведена качественная предварительная обработка, приводящая изображения к стандартным условиям (масштаб, поворот, центрирование, выравнивание яркости, отсечение фона).Посмотреть предложения по расчету стоимости
Заказчик
заплатил
заплатил
200 ₽
Заказчик не использовал рассрочку
Гарантия сервиса
Автор24
Автор24
20 дней
Заказчик воспользовался гарантией для внесения правок на основе комментариев преподавателя
21 ноября 2019
Заказ завершен, заказчик получил финальный файл с работой
5
Алгоритмы метода главных компонент.docx
2021-02-18 20:21
Последний отзыв студента о бирже Автор24
Общая оценка
4.3
Положительно
Спасибо огромное, особенно за скорость, буквально пару часов и реферат готов! Не ожидала) Текс сам я не читала, но все оформлено красиво) Еще раз спасибо!