Найди эксперта для помощи в учебе
Найти эксперта
+2
Пример заказа на Автор24
Студенческая работа на тему:
Формирование учебной мотивации учащихся при решении геометрических задач.
Создан заказ №4319746
3 ноября 2019

Формирование учебной мотивации учащихся при решении геометрических задач.

Как заказчик описал требования к работе:
В журнал ВАК нужно расширить содержательную часть. Например, можно рассмотреть методику конкретного занятия или даже решения типовой задачи со средствами ИКТ или другими способами развития мотивации.
Заказчик
заплатил
200 ₽
Заказчик не использовал рассрочку
Гарантия сервиса
Автор24
20 дней
Заказчик воспользовался гарантией, чтобы исполнитель повысил уникальность работы
4 ноября 2019
Заказ завершен, заказчик получил финальный файл с работой
5
Заказ выполнил
authorAlexander
5
скачать
Формирование учебной мотивации учащихся при решении геометрических задач..docx
2019-11-07 19:04
Последний отзыв студента о бирже Автор24
Общая оценка
5
Положительно
Автор сдал работу в срок. От меня были комментарии и правки - Автор нормально их исправлял.

Хочешь такую же работу?

Оставляя свои контактные данные и нажимая «Создать задание», я соглашаюсь пройти процедуру регистрации на Платформе, принимаю условия Пользовательского соглашения и Политики конфиденциальности в целях заключения соглашения.
Хочешь написать работу самостоятельно?
Используй нейросеть
Мы создали собственный искусственный интеллект,
чтобы помочь тебе с учебой за пару минут 👇
Использовать нейросеть
Тебя также могут заинтересовать
построение сечений многогранников
Курсовая работа
Геометрия
Стоимость:
700 ₽
Аксиомы стереометрии. Параллельность прямых и плоскостей.
Контрольная работа
Геометрия
Стоимость:
300 ₽
Контрольная работа №1 Векторы. Метод координат ,
Контрольная работа
Геометрия
Стоимость:
300 ₽
Теорема Пифагора
Эссе
Геометрия
Стоимость:
300 ₽
Проблемма сравнения узлов
Реферат
Геометрия
Стоимость:
300 ₽
Работа по геометрии
Контрольная работа
Геометрия
Стоимость:
300 ₽
Читай полезные статьи в нашем
Прямоугольные треугольники
Вначале рассмотрим понятие произвольного треугольника.

Очевидно, что любой треугольник будет иметь 3 вершин, а также три стороны.
Теперь введем, непосредственно, понятие прямоугольного треугольника.
При этом стороны, которые прилегают к прямому углу, будут называться катетами, а третья сторона – гипотенузой (рис. 2).

Как и для любого треугольника, для прямоугольного справедлива следующая теорема:
Сформ...
подробнее
Как найти вектор, перпендикулярный вектору
Вначале надо разобраться, что является геометрическим вектором. Для этого сначала введем понятие отрезка.
Для введения определения вектора один из концов отрезка назовем его началом.
Обозначение: \overline{AB} - вектор AB , имеющий начало в точке A , а конец в точке B .
Иначе одной маленькой буквой: \overline{a} (рис. 1).

Обозначение: \overline{0} .
Введем теперь, непосредственно, определение к...
подробнее
Координаты точки и координаты вектора. Как найти координаты вектора
Чтобы определить понятие координат точек нам необходимо ввести систему координат, в которой мы и будем определять ее координаты. Одна и та же точка, в разных системах координат может иметь различные координаты. Здесь мы будем рассматривать прямоугольную систему координат в пространстве.
Возьмем в пространстве точку O и введем для нее координаты (0,0,0) . Назовем ее началом системы координат. Про...
подробнее
Пример развернутого угла

Рисунок 1. Пример, как выглядит развёрнутый угол. Автор24 — интернет-биржа студенческих работ
Лучи, являющиеся сторонами развёрнутого угла, называют противоположными или иногда дополнительными, а начало, из которого исходят оба луча — вершиной.
У рассматриваемого в данной статье объекта есть одно особенное свойство, не характерное для других углов — он не может являться углом такой фигуры, как $\tri...
подробнее
Прямоугольные треугольники
Вначале рассмотрим понятие произвольного треугольника.

Очевидно, что любой треугольник будет иметь 3 вершин, а также три стороны.
Теперь введем, непосредственно, понятие прямоугольного треугольника.
При этом стороны, которые прилегают к прямому углу, будут называться катетами, а третья сторона – гипотенузой (рис. 2).

Как и для любого треугольника, для прямоугольного справедлива следующая теорема:
Сформ...
подробнее
Как найти вектор, перпендикулярный вектору
Вначале надо разобраться, что является геометрическим вектором. Для этого сначала введем понятие отрезка.
Для введения определения вектора один из концов отрезка назовем его началом.
Обозначение: \overline{AB} - вектор AB , имеющий начало в точке A , а конец в точке B .
Иначе одной маленькой буквой: \overline{a} (рис. 1).

Обозначение: \overline{0} .
Введем теперь, непосредственно, определение к...
подробнее
Координаты точки и координаты вектора. Как найти координаты вектора
Чтобы определить понятие координат точек нам необходимо ввести систему координат, в которой мы и будем определять ее координаты. Одна и та же точка, в разных системах координат может иметь различные координаты. Здесь мы будем рассматривать прямоугольную систему координат в пространстве.
Возьмем в пространстве точку O и введем для нее координаты (0,0,0) . Назовем ее началом системы координат. Про...
подробнее
Пример развернутого угла

Рисунок 1. Пример, как выглядит развёрнутый угол. Автор24 — интернет-биржа студенческих работ
Лучи, являющиеся сторонами развёрнутого угла, называют противоположными или иногда дополнительными, а начало, из которого исходят оба луча — вершиной.
У рассматриваемого в данной статье объекта есть одно особенное свойство, не характерное для других углов — он не может являться углом такой фигуры, как $\tri...
подробнее
Теперь вам доступен полный отрывок из работы
Также на e-mail вы получите информацию о подробном расчете стоимости аналогичной работы