Создан заказ №4486206
14 декабря 2019
Помехоустойчивые коды для пакетов ошибок
Как заказчик описал требования к работе:
Нужен аспирант или преподаватель, чтобы помочь сделать реферат по информационным технологиям, сроки очень сжатые. Отзовитесь, пожалуйста!
Фрагмент выполненной работы:
ВВЕДЕНИЕ
Рассмотрим простейшую модель парной регрессии – линейную регрессию. Линейная регрессия находит широкое применение в эконометрике ввиду четкой экономической интерпретации ее параметров.
Множественная регрессия и корреляция
Парная регрессия может дать хороший результат при моделировании, если влиянием других факторов, воздействующих на объект исследования, можно пренебречь. Если же этим влиянием пренебречь нельзя, то в этом случае следует попытаться выявить влияние других факторов, введя их в модель, т.е. (работа была выполнена специалистами author24.ru) построить уравнение множественной регрессии
,
где – зависимая переменная (результативный признак),– независимые, или объясняющие, переменные (признаки-факторы).
Множественная регрессия широко используется в решении проблем спроса, доходности акций, при изучении функции издержек производства, в макроэкономических расчетах и целом ряде других вопросов эконометрики. В настоящее время множественная регрессия – один из наиболее распространенных методов в эконометрике. Основная цель множественной регрессии – построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель.
2.1. Спецификация модели. Отбор факторов при построении уравнения множественной регрессии
Построение уравнения множественной регрессии начинается с решения вопроса о спецификации модели. Он включает в себя два круга вопросов: отбор факторов и выбор вида уравнения регрессии.
Включение в уравнение множественной регрессии того или иного набора факторов связано прежде всего с представлением исследователя о природе взаимосвязи моделируемого показателя с другими экономическими явлениями. Факторы, включаемые во множественную регрессию, должны отвечать следующим требованиям.
Они должны быть количественно измеримы. Если необходимо включить в модель качественный фактор, не имеющий количественного измерения, то ему нужно придать количественную определенность.
Факторы не должны быть интеркоррелированы и тем более находиться в точной функциональной связи.
Включение в модель факторов с высокой интеркорреляцией, может привести к нежелательным последствиям – система нормальных уравнений может оказаться плохо обусловленной и повлечь за собой неустойчивость и ненадежность оценок коэффициентов регрессии.
Если между факторами существует высокая корреляция, то нельзя определить их изолированное влияние на результативный показатель и параметры уравнения регрессии оказываются неинтерпретируемыми.
Включаемые во множественную регрессию факторы должны объяснить вариацию независимой переменной. Если строится модель с набором факторов, то для нее рассчитывается показатель детерминации, который фиксирует долю объясненной вариации результативного признака за счет рассматриваемых в регрессиифакторов. Влияние других, не учтенных в модели факторов, оценивается какс соответствующей остаточной дисперсией.
При дополнительном включении в регрессию фактора коэффициент детерминации должен возрастать, а остаточная дисперсия уменьшаться:
и.
Если же этого не происходит и данные показатели практически не отличаются друг от друга, то включаемый в анализ фактор не улучшает модель и практически является лишним фактором.
Насыщение модели лишними факторами не только не снижает величину остаточной дисперсии и не увеличивает показатель детерминации, но и приводит к статистической незначимости параметров регрессии по критерию Стьюдента.
Таким образом, хотя теоретически регрессионная модель позволяет учесть любое число факторов, практически в этом нет необходимости. Отбор факторов производится на основе качественного теоретико-экономического анализа. Однако теоретический анализ часто не позволяет однозначно ответить на вопрос о количественной взаимосвязи рассматриваемых признаков и целесообразности включения фактора в модель. Поэтому отбор факторов обычно осуществляется в две стадии: на первой подбираются факторы исходя из сущности проблемы; на второй – на основе матрицы показателей корреляции определяют статистики для параметров регрессии.
Коэффициенты интеркорреляции (т.е. корреляции между объясняющими переменными) позволяют исключать из модели дублирующие факторы. Считается, что две переменные явно коллинеарны, т.е. находятся между собой в линейной зависимости, если . Если факторы явно коллинеарны, то они дублируют друг друга и один из них рекомендуется исключить из регрессии. Предпочтение при этом отдается не фактору, более тесно связанному с результатом, а тому фактору, который при достаточно тесной связи с результатом имеет наименьшую тесноту связи с другими факторами. В этом требовании проявляется специфика множественной регрессии как метода исследования комплексного воздействия факторов в условиях их независимости друг от друга.
Пусть, например, при изучении зависимости матрица парных коэффициентов корреляции оказалась следующей:
Таблица 2.Посмотреть предложения по расчету стоимости
Заказчик
заплатил
заплатил
200 ₽
Заказчик не использовал рассрочку
Гарантия сервиса
Автор24
Автор24
20 дней
Заказчик воспользовался гарантией, чтобы исполнитель повысил уникальность работы
15 декабря 2019
Заказ завершен, заказчик получил финальный файл с работой
5
Помехоустойчивые коды для пакетов ошибок.docx
2019-12-18 16:13
Последний отзыв студента о бирже Автор24
Общая оценка
5
Положительно
Отличный автор! Сделал заказ вовремя, с соблюдением всех требований, даже часть сделал лучше, например оригинальность. при необходимых 80% автор сделал 99%! Больше ему спасибо! Рекомендую