Создан заказ №477936
5 апреля 2015
Задания по теории вероятностей
Как заказчик описал требования к работе:
Подробный ответ.
Задание 1.1.
Пятитомное собрание сочинений расположено на полке в случайном порядке. Какова вероятность того, что книги стоят слева направо в порядке нумерации томов (от 1 до 5)?
Задание 1.2.
Среди 25 студентов, из которых 15 девушек, разыгрываются четыре билета, причем каждый м
ожет выиграть только один билет. Какова вероятность того, что среди обладателей билета окажутся: а) четыре девушки; б) четыре юноши; в) три юноши и одна девушка?
Задание 1.3.
Из 20 сбербанков 10 расположены за чертой города. Для обследования случайным образом отобрано 5 сбербанков. Какова вероятность того, что среди отобранных окажется в черте города: а) 3 Сбербанка; б) хотя бы один?
Задание 1.4.
В магазине имеются 30 телевизоров, причем 20 из них импортных. Найти вероятность того, что среди 5 проданных в течение дня телевизоров окажется не менее 3 импортных телевизоров, предполагая, что вероятности покупки телевизоров разных марок одинаковы.
Задание 1.5.
Студент знает 20 из 25 вопросов программы. Зачет считается сданным, если студент ответит не менее чем на 3 из 4 поставленных в билете вопросов. Взглянув на первый вопрос билета, студент обнаружил, что он его знает. Какова вероятность того, что студент: а) сдаст зачет; б) не сдаст зачет?
Задание 1.6.
В старинной игре в кости необходимо было для выигрыша получить при бросании трех игральных костей сумму очков, превосходящую 10. Найти вероятности: а) выпадения 11 очков; б) выигрыша.
Задание 1.7.
Экспедиция издательства отправила газеты в три почтовых отделения. Вероятность своевременной доставки газет в первое отделение равна 0,95, во второе отделение — 0,9 и в третье — 0,8. Найти вероятность следующих событий: а) только одно отделение получит газеты вовремя; б) хотя бы одно отделение получит газеты с опозданием.
Задание 2.1.
Вероятность поражения вирусным заболеванием куста земляники равна 0,2. Составить закон распределения числа кустов земляники, зараженных вирусом, из четырех посаженных кустов.
Задание 2.2.
Контрольная работа состоит из трех вопросов. На каждый вопрос приведено 4 ответа, один из которых правильный. Составить закон распределения числа правильных ответов при простом угадывании. Найти математическое ожидание и дисперсию этой случайной величины.
Задание 2.3.
В среднем по 10% договоров страховая компания выплачивает страховые суммы в связи с наступлением страхового случая. Составить закон распределения числа таких договоров среди наудачу выбранных четырех. Вычислить математическое ожидание и дисперсию этой случайной величины.
Задание 2.4.
В билете три задачи. Вероятность правильного решения первой задачи равна 0,9, второй — 0,8, третьей — 0,7. Составить закон распределения числа правильно решенных задач в билете и вычислить математическое ожидание и дисперсию этой случайной величины.
Задание 2.5.
Найти закон распределения числа пакетов трех акций, по которым владельцем будет получен доход, если вероятность получения дохода по каждому из них равна соответственно 0,5, 0,6, 0,7. Найти математическое ожидание и дисперсию данной случайной величины, построить функцию распределения.
Задание 2.6.
Из 10 телевизоров на выставке 4 оказались фирмы «Сони». Наудачу для осмотра выбрано 3. Составить закон распределения числа телевизоров фирмы «Сони» среди 3 отобранных.
Задание 2.7.
Два стрелка сделали по два выстрела по мишени. Вероятность попадания в мишень для первого стрелка равна 0,6, для второго — 0,7. Необходимо: а) составить закон распределения общего числа попаданий; б) найти математическое ожидание и дисперсию этой случайной величины.
Задание 2.10.
Цена деления шкалы измерительного прибора равна 0,2. Показания прибора округляют до ближайшего целого числа. Полагая, что при отсчете ошибка округления распределена по равномерному закону.
Найти:
математическое ожидание, дисперсию и среднее квадратическое отклонение этой случайной величины;
вероятность того, что ошибка округления: а) меньше 0,04; б) больше 0,05.
Задание 2.11.
Среднее время безотказной работы прибора равно 80 ч. Полагая, что время безотказной работы прибора имеет показательный закон распределения, найти: а) выражение его плотности вероятности и функции распределения; б) вероятность того, что в течение 100 ч. прибор не выйдет из строя.
Задание 2.12.
Текущая цена акции может быть смоделирована с помощью нормального закона распределения с математическим ожиданием 15 ден. ед. и средним квадратическим отклонением 0,2 ден. ед.
Найти вероятность того, что цена акции: а) не выше 15,3 ден. ед.; б) не ниже 15,4 ден. ед.; в) от 14,9 до 15,3 ден. ед.
С помощью правила трех сигм найти границы, в которых будет находиться текущая цена акции.
+ 2 задания в ворд
подробнее
Заказчик
заплатил
заплатил
200 ₽
Заказчик не использовал рассрочку
Гарантия сервиса
Автор24
Автор24
20 дней
Заказчик принял работу без использования гарантии
6 апреля 2015
Заказ завершен, заказчик получил финальный файл с работой
5
Задания по теории вероятностей.docx
2020-12-23 23:15
Последний отзыв студента о бирже Автор24
Общая оценка
4.7
Положительно
В очередной раз спасибо Елене за проделанную работу. Все было сделано быстро и качественно.