Рассчитай точную стоимость своей работы и получи промокод на скидку 200 ₽
Найди эксперта для помощи в учебе
Найти эксперта
+2
Пример заказа на Автор24
Студенческая работа на тему:
Дано: треугольник МКЕ МК=МЕ ОЕ=6см угол МКЕ=48° угол РОЕ=90° найти:МЕ
Создан заказ №6274981
26 февраля 2021

Дано: треугольник МКЕ МК=МЕ ОЕ=6см угол МКЕ=48° угол РОЕ=90° найти:МЕ

Как заказчик описал требования к работе:
Дано: треугольник МКЕ МК=МЕ ОЕ=6см угол МКЕ=48° угол РОЕ=90° найти:МЕ, МКО геометрия
Заказчик
заплатил
20 ₽
Заказчик не использовал рассрочку
Гарантия сервиса
Автор24
20 дней
Заказчик принял работу без использования гарантии
27 февраля 2021
Заказ завершен, заказчик получил финальный файл с работой
5
Заказ выполнил
user569085
5
скачать
Дано: треугольник МКЕ МК=МЕ ОЕ=6см угол МКЕ=48° угол РОЕ=90° найти:МЕ.jpg
2021-04-14 16:05
Последний отзыв студента о бирже Автор24
Общая оценка
5
Положительно
Качественно и в срок выполнена работа, всё написано разборчиво, решением автора довольна.

Хочешь такую же работу?

Оставляя свои контактные данные и нажимая «Создать задание», я соглашаюсь пройти процедуру регистрации на Платформе, принимаю условия Пользовательского соглашения и Политики конфиденциальности в целях заключения соглашения.
Хочешь написать работу самостоятельно?
Используй нейросеть
Мы создали собственный искусственный интеллект,
чтобы помочь тебе с учебой за пару минут 👇
Использовать нейросеть
Тебя также могут заинтересовать
2 Задачи с каноническими уравнениями
Решение задач
Геометрия
Стоимость:
150 ₽
Трансцендентные плоские кривые
Курсовая работа
Геометрия
Стоимость:
700 ₽
курсовая по геометрии
Курсовая работа
Геометрия
Стоимость:
700 ₽
практическое задание по начертательной геометрии
Решение задач
Геометрия
Стоимость:
150 ₽
Гомотетия
Решение задач
Геометрия
Стоимость:
150 ₽
Геометрия
Решение задач
Геометрия
Стоимость:
150 ₽
Геометрические экстремумы
Решение задач
Геометрия
Стоимость:
150 ₽
практическое задание по начертательной геометрии
Решение задач
Геометрия
Стоимость:
150 ₽
Читай полезные статьи в нашем
Формулы параллелограмма, трапеции, квадрата, прямоугольника и ромба
Введем для начала понятие многоугольника вообще.
Четырехугольники могут быть выпуклыми и невыпуклыми.
Классическими примерами выпуклых четырехугольников являются квадрат, прямоугольник, трапеция, ромб, параллелограмм. Рассмотрим далее эти фигуры по отдельности.
подробнее
Проекция вектора на ось. Как найти проекцию вектора
Для понятия проекции вектора на ось или какой-либо другой вектор существуют понятия ее геометрической проекции и числовой (или алгебраической) проекции. Результатом геометрической проекции будет вектор, а результатом алгебраической – неотрицательное действительное число. Но перед тем, как перейти к этим понятиям вспомним необходимую информацию.
Основное понятие – непосредственно понятие вектора. Дл...
подробнее
Движение
Перед тем, как ввести понятие движения в пространстве, надо ввести определение отображения пространства на себя.
Введем теперь, непосредственно, определение движения.
Пример – рисунок 1.

Введем теперь несколько теорем, связанных с понятием движения без доказательства.
Основными примерами движений являются центральная, осевая и зеркальная симметрии. Рассмотрим их более подробно.
Перед тем, как определит...
подробнее
Как найти смешанное произведение векторов
Для того чтобы мы могли ввести понятие смешанного произведения векторов, нужно сначала вспомнить понятия скалярного и векторного произведений этих векторов.
Математически это может выглядеть следующим образом:
\overline{α}\overline{β}=|\overline{α}||\overline{β}|cos⁡∠(\overline{α},\overline{β})
Также, помимо того, как из самого определения 1, для нахождения скалярного произведения можно пользоватьс...
подробнее
Формулы параллелограмма, трапеции, квадрата, прямоугольника и ромба
Введем для начала понятие многоугольника вообще.
Четырехугольники могут быть выпуклыми и невыпуклыми.
Классическими примерами выпуклых четырехугольников являются квадрат, прямоугольник, трапеция, ромб, параллелограмм. Рассмотрим далее эти фигуры по отдельности.
подробнее
Проекция вектора на ось. Как найти проекцию вектора
Для понятия проекции вектора на ось или какой-либо другой вектор существуют понятия ее геометрической проекции и числовой (или алгебраической) проекции. Результатом геометрической проекции будет вектор, а результатом алгебраической – неотрицательное действительное число. Но перед тем, как перейти к этим понятиям вспомним необходимую информацию.
Основное понятие – непосредственно понятие вектора. Дл...
подробнее
Движение
Перед тем, как ввести понятие движения в пространстве, надо ввести определение отображения пространства на себя.
Введем теперь, непосредственно, определение движения.
Пример – рисунок 1.

Введем теперь несколько теорем, связанных с понятием движения без доказательства.
Основными примерами движений являются центральная, осевая и зеркальная симметрии. Рассмотрим их более подробно.
Перед тем, как определит...
подробнее
Как найти смешанное произведение векторов
Для того чтобы мы могли ввести понятие смешанного произведения векторов, нужно сначала вспомнить понятия скалярного и векторного произведений этих векторов.
Математически это может выглядеть следующим образом:
\overline{α}\overline{β}=|\overline{α}||\overline{β}|cos⁡∠(\overline{α},\overline{β})
Также, помимо того, как из самого определения 1, для нахождения скалярного произведения можно пользоватьс...
подробнее
Теперь вам доступен полный отрывок из работы
Также на e-mail вы получите информацию о подробном расчете стоимости аналогичной работы