Рассчитай точную стоимость своей работы и получи промокод на скидку 200 ₽
Найди эксперта для помощи в учебе
Найти эксперта
+2
Пример заказа на Автор24
Студенческая работа на тему:
Основа прямої призми – прямокутний трикутник з катетами 6 см і 8 см. О
Создан заказ №8770124
23 сентября 2022

Основа прямої призми – прямокутний трикутник з катетами 6 см і 8 см. О

Как заказчик описал требования к работе:
Основа прямої призми – прямокутний трикутник з катетами 6 см і 8 см. Об’єм прямої призми дорівнює 240 см 2. Знайдіть бічну поверхню призми. Відповідь запишіть без одиниць вимірювання
Заказчик
заплатил
20 ₽
Заказчик не использовал рассрочку
Гарантия сервиса
Автор24
20 дней
Заказчик принял работу без использования гарантии
24 сентября 2022
Заказ завершен, заказчик получил финальный файл с работой
5
Заказ выполнил
mev12
5
скачать
Основа прямої призми – прямокутний трикутник з катетами 6 см і 8 см. О.jpg
2022-09-27 12:11
Последний отзыв студента о бирже Автор24
Общая оценка
5
Положительно
Очень быстро и понятно! Автор всё раскладывает по полочкам. Достоин высшей похвалы;)

Хочешь такую же работу?

Оставляя свои контактные данные и нажимая «Создать задание», я соглашаюсь пройти процедуру регистрации на Платформе, принимаю условия Пользовательского соглашения и Политики конфиденциальности в целях заключения соглашения.
Хочешь написать работу самостоятельно?
Используй нейросеть
Мы создали собственный искусственный интеллект,
чтобы помочь тебе с учебой за пару минут 👇
Использовать нейросеть
Тебя также могут заинтересовать
решить 2 геометрические задачи школьная программа
Контрольная работа
Геометрия
Стоимость:
300 ₽
Гомология: определения, свойства, приложения
Курсовая работа
Геометрия
Стоимость:
700 ₽
Координатно векторный метод решения задач
Дипломная работа
Геометрия
Стоимость:
4000 ₽
Очень быстро решить задачу по геометрии 7 класс
Решение задач
Геометрия
Стоимость:
150 ₽
Золотое сечение с точки зрения математики
Реферат
Геометрия
Стоимость:
300 ₽
Найти уравнение симметрии правильного пятиугольника
Решение задач
Геометрия
Стоимость:
150 ₽
элементы конструктивной геометрии
Решение задач
Геометрия
Стоимость:
150 ₽
решение задач Геометрия
Решение задач
Геометрия
Стоимость:
150 ₽
Решить 4 задачи по аналитической геометрии
Решение задач
Геометрия
Стоимость:
150 ₽
индивидуальное дз по курсу аналитическая геометрия
Решение задач
Геометрия
Стоимость:
150 ₽
тест по алгебре рациональные выражения за 8 класс
Решение задач
Геометрия
Стоимость:
150 ₽
Геометрия решение задач ( поверхности 2 порядка)
Решение задач
Геометрия
Стоимость:
150 ₽
Читай полезные статьи в нашем
Как найти площадь параллелограмма, треугольника, трапеции
Как найти площадь параллелограмма, треугольника, трапеции
подробнее
Проекция вектора на ось. Как найти проекцию вектора
Для понятия проекции вектора на ось или какой-либо другой вектор существуют понятия ее геометрической проекции и числовой (или алгебраической) проекции. Результатом геометрической проекции будет вектор, а результатом алгебраической – неотрицательное действительное число. Но перед тем, как перейти к этим понятиям вспомним необходимую информацию.
Основное понятие – непосредственно понятие вектора. Дл...
подробнее
Как найти вектор, перпендикулярный вектору
Вначале надо разобраться, что является геометрическим вектором. Для этого сначала введем понятие отрезка.
Для введения определения вектора один из концов отрезка назовем его началом.
Обозначение: \overline{AB} - вектор AB , имеющий начало в точке A , а конец в точке B .
Иначе одной маленькой буквой: \overline{a} (рис. 1).

Обозначение: \overline{0} .
Введем теперь, непосредственно, определение к...
подробнее
Как найти угол между векторами
Для того, чтобы мы могли ввести формулу для вычисления угла между векторами, нужно сначала разобраться с самим понятием угла между этими векторами.

Причем мы будем считать, что если векторы \overline{α} и \overline{β} будут сонаправленными или один или оба из них будет нулевым вектором, то угол между этими векторами будет равняться 0^\circ .
Обозначение: ∠(\overline{α},\overline{β})
Вспомним с...
подробнее
Как найти площадь параллелограмма, треугольника, трапеции
Как найти площадь параллелограмма, треугольника, трапеции
подробнее
Проекция вектора на ось. Как найти проекцию вектора
Для понятия проекции вектора на ось или какой-либо другой вектор существуют понятия ее геометрической проекции и числовой (или алгебраической) проекции. Результатом геометрической проекции будет вектор, а результатом алгебраической – неотрицательное действительное число. Но перед тем, как перейти к этим понятиям вспомним необходимую информацию.
Основное понятие – непосредственно понятие вектора. Дл...
подробнее
Как найти вектор, перпендикулярный вектору
Вначале надо разобраться, что является геометрическим вектором. Для этого сначала введем понятие отрезка.
Для введения определения вектора один из концов отрезка назовем его началом.
Обозначение: \overline{AB} - вектор AB , имеющий начало в точке A , а конец в точке B .
Иначе одной маленькой буквой: \overline{a} (рис. 1).

Обозначение: \overline{0} .
Введем теперь, непосредственно, определение к...
подробнее
Как найти угол между векторами
Для того, чтобы мы могли ввести формулу для вычисления угла между векторами, нужно сначала разобраться с самим понятием угла между этими векторами.

Причем мы будем считать, что если векторы \overline{α} и \overline{β} будут сонаправленными или один или оба из них будет нулевым вектором, то угол между этими векторами будет равняться 0^\circ .
Обозначение: ∠(\overline{α},\overline{β})
Вспомним с...
подробнее
Теперь вам доступен полный отрывок из работы
Также на e-mail вы получите информацию о подробном расчете стоимости аналогичной работы