Создан заказ №905296
4 января 2016
Имеется следующая модель Ct = a1+b12Yt+b13Tt+ε1 It = a2+b21Yt+b24Кt-1+ ε2 Yt = Ct+It C - потребление I - инвестиции Y - доход T - налоги К - запас капитала t - текущий период t-1 - предыдущий период Применив необходимое и достаточное условие идентификации
Как заказчик описал требования к работе:
Выполнить контрольную по эконометрике за 2 дня в двух вариантах. Пишите сразу сколько будет стоить контрольная.
Фрагмент выполненной работы:
Имеется следующая модель:
Ct = a1+b12Yt+b13Tt+ε1
It = a2+b21Yt+b24Кt-1+ ε2
Yt = Ct+It
C - потребление
I - инвестиции
Y - доход
T - налоги
К - запас капитала
t - текущий период
t-1 - предыдущий период
Применив необходимое и достаточное условие идентификации, определите, идентифицируемо ли каждое из уравнений модели. Укажите, каким методом вы будете оценивать структурные параметры каждого уравнения. (работа была выполнена специалистами author24.ru) Напишите приведенную форму модели.
Решение:
Рассматриваемая нами модель представляет собой систему одновременных уравнений. Проверим каждое ее уравнение на идентификацию.
Модель включает три эндогенные переменные (Сt, Yt, It) и две предопределенные переменные (одну экзогенную переменную - Tt и одну лаговую переменную Kt-1).
1. Проверим необходимое условие идентификации для каждого из уравнений модели.
Первое уравнение Ct= a1+b12Yt+b13Tt+ε1. Это уравнение содержит две эндогенные переменные (Сt, Yt) и одну предопределенную переменную (Tt). Таким образом, Н= 2, а D=4-1= 3, то есть выполняется условие D+1>H. Уравнение сверхидентицицируемо.
Второе уравнение It= a2+b21Yt+b24Кt-1+ ε2 Оно включает две эндогенные переменные (Yt, It) и одну лаговую переменную Kt-1. Таким образом, Н= 2, а D=4-1= 3, то есть выполняется условие D+1>H. Уравнение сверхидентицицируемо.
Третье уравнение Yt=Ct+It. Оно представляет собой тождество, параметры которого известны. Необходимости в индентификации нет.
Проверим для каждого уравнения достаточное условие идентификации. Для этого составим матрицу коэффициентов при переменных модели.
Ct It Yt Tt Kt-1
I уравнение -1 0 b12 b13 0
II уравнение 0 -1 b21 0 b24
Тождество 1 1 -1 0 0
В соответствии с достаточным условием идентификации ранг матрицы коэффициентов при переменных, не входящих в исследуемое уравнение, должен быть равен числу эндогенных переменных модели без одного (число эндогенных переменных модели без одного составляет 2).
Первое уравнение. Матрица коэффициентов при переменных, не входящих в уравнение, имеет вид
It Kt-1
II уравнение -1 b24
Тождество 1 0
Ранг данной матрицы равен двум. Определитель матрицы равен -1- b24 , и он не равен 0.
Достаточное условие идентификации для данного уравнения выполняется.
Второе уравнение. Матрица коэффициентов при переменных, не входящих в уравнение, имеет вид
Сt Tt
I уравнение -1 b13
Тождество 1 0
Ранг данной матрицы равен двум. Определитель матрицы равен -1- b13 , и он не равен 0.
Достаточное условие идентификации для данного уравнения выполняется.
Таким образом, все уравнения модели сверхидентифицируемы.
2...Посмотреть предложения по расчету стоимости
Заказчик
заплатил
заплатил
200 ₽
Заказчик не использовал рассрочку
Гарантия сервиса
Автор24
Автор24
20 дней
Заказчик принял работу без использования гарантии
5 января 2016
Заказ завершен, заказчик получил финальный файл с работой
5
Имеется следующая модель
Ct = a1+b12Yt+b13Tt+ε1
It = a2+b21Yt+b24Кt-1+ ε2
Yt = Ct+It
C - потребление
I - инвестиции
Y - доход
T - налоги
К - запас капитала
t - текущий период
t-1 - предыдущий период
Применив необходимое и достаточное условие идентификации.docx
2016-06-23 02:26
Последний отзыв студента о бирже Автор24
Общая оценка
5
Положительно
Автор оперативно сделал работу, заказала ночью, работа была у меня уже в 8 утра. Хорошая цена и хорошая работа. Были небольшие недочеты, но ничего страшного, все легко исправимо. Работу приняли. Спасибо, рекомендую!