Очень быстро, тема подошла всё по существу. Спасибо
Подробнее о работе
Гарантия сервиса Автор24
Уникальность не ниже 50%
СОДЕРЖАНИЕ
Введение 3
1. Энергия воды 4
1.1. Приливные электростанции 4
1.2. Энергия течений 6
2. Энергия ветра 8
3. Геотермальные электростанции 10
4. Солнечная энергия 12
5. Водородная экономика 14
6. Энергия из космоса 15
7. Термоядерная энергия 17
Вывод 18
Список использованой литературы 19
1.1. Приливные электростанции
Уровень воды на морских побережьях в течение суток меняется три раза. Такие колебания особо заметны в заливах и устьях рек, впадающих в море. Через каждые 6 ч 12 мин прилив сменяется отливом. Максимальная амплитуда приливов в разных местах нашей планеты неодинакова и составляет от 4 до 20 м.
Для устройства простейшей приливной электростанции (ПЭС) нужен бассейн – перекрытый плотиной залив или устье реки. В плотине имеются водопропускные отверстия и установлены турбины. Во время прилива вода поступает в бассейн. Когда уровни воды в бассейне и море сравняются, затворы водопропускных отверстий закрываются. С наступлением отлива уровень воды в море понижается, и, когда напор становится достаточным, турбины и соединенные с ним электрогенераторы начинают работать, а вода из бассейна постепенно уходит. Считается экономически целесообразным строительство ПЭС в районах с приливными колебаниями уровня моря не менее 4 м.
...
1.2. Энергия течений
Наиболее мощные течения океана – потенциальный источник энергии. Современный уровень техники позволяет извлекать энергию течений при скорости потока более 1 м/с. При этом мощность от 1 м2 поперечного сечения потока составляет около 1 кВт. Перспективным представляется использование таких мощных течений, как Гольфстрим и Куросио, несущих соответственно 83 и 55 млн. м3 воды со скоростью до 2 м/с, и Флоридского течения (30 млн. м3, скорость до 1,8 м/с).
Для океанской энергетики представляют интерес течения в проливах Гибралтарском, Ла-Манш, Курильских. Однако создание океанских электростанций на энергии течений связано пока с рядом технических трудностей, прежде всего с созданием энергетических установок больших размеров, представляющих угрозу судоходству.
...
2. Энергия ветра
Уже очень давно, видя, какие разрушения могут приносить бури и ураганы, человек задумывался над тем, нельзя ли использовать энергию ветра.
Энергия ветра очень велика. Ее запасы по оценкам Всемирной метеорологической организации, составляют 170 трлн кВт*ч в год. Эту энергию можно получать, не загрязняя окружающую среду. Но у ветра есть два существенных недостатка: его энергия сильно рассеяна в пространстве и он непредсказуем – часто меняет направление, вдруг затихает даже в самых ветреных районах земного шара, а иногда достигает такой силы, что ломает ветряки.
Строительство, содержание, ремонт ветроустановок, круглосуточно работающих в любую погоду под открытым небом, стоит недешево. Ветроэлектростанция такой же мощности, как ГЭС, ТЭЦ или АЭС, по сравнению с ними должна занимать большую площадь.
...
3. Геотермальные электростанции
Около 4% всех запасом воды на нашей планете сосредоточено под землей – в толщах горных пород. Воды, температура которых превышает 20º С, называют термальными (от греч. «терме» - «тепло», «жар»). Нагреваются подземные озера и реки в результате радиоактивных процессов и химических реакций, протекающих в недрах Земли. В районах вулканической деятельности на глубине 500-1000 м встречаются бассейны с температурой 150-250 ºС; вода в них находится под большим давлением и, поэтому не кипит. В горных областях термальные воды нередко выходят на поверхность в виде горячих источников с температурой до 90 ºС [1].
Люди научились использовать глубинное тепло Земли в хозяйственных целях. В странах, где термальные воды подходят близко к поверхности, сооружают геотермальные электростанции (геоТЭС). Они преобразуют тепловую энергию подземных источников в электрическую. В России первая геоТЭС мощностью 5 МВт была построена в 1966 г.
...
4. Солнечная энергия
Солнце изливает на Землю океан энергии. Человек буквально купается в этом океане, энергия везде. Солнечная энергия доступна всем и каждому. Она экологична – ничего не загрязняет, ничего не нарушает, она дает жизнь всему сущему на Земле. Больше того, эта энергия даровая, но при всех своих достоинствах и самая дорогая. Именно поэтому солнечные электростанции не так распространены, как электростанции других видов.
На острове Сицилия недалеко от известного своим неспокойным характером вулкана Этна еще в начале 80-х годов дала ток солнечная электростанции мощностью 1 МВт. Принцип ее работы – башенный. Зеркала фокусируют солнечные лучи на приемнике, расположенном на высоте 50 м. Там вырабатывается пар с температурой более 500º С, который приводит в действие традиционную турбину с подключенным к ней генератором тока. При переменной облачности недостаток солнечной энергии компенсируется паровым аккумулятором.
...
5. Водородная экономика
Один из самых необычных и, пожалуй, самых привлекательных сценариев энергетического будущего человечества открывает проект «Водородная экономика». Его суть заключается в замене ископаемого топлива водородом. Физический и химический смысл проекта ясен: основная энергия в нефти, газе, каменном угле и дереве запасена в виде углеводородов – соединений углерода с водородом. И не углерод, а именно водород дает при сжигании наибольшее количество тепловой энергии, превращаемой в механическую.
Водорода на земле огромное количество, причем огромные его запасы сосредоточены не в углеводородах, а в воде. Но если для получения энергии из нефти, газа, каменного угля и дерева их достаточно сжечь, то с водой так поступить нельзя: слишком прочно связаны в ней водород и кислород.
...
6. Энергия из космоса
Получать и использовать «чистую» солнечную энергию на поверхности Земли мешает атмосфера. Само собой напрашивается решение: разместить солнечные энергостанции в космосе, на около земной орбите. Там не будет атмосферных помех, невесомость позволит создавать многокилометровые конструкции, которые необходимы для «сбора» энергии солнца. У таких станций есть большое достоинство. Преобразование одного вида энергии в другой неизбежно сопровождается выделением тепла, и сброс его в космос позволит предотвратить опасное перегревание земной атмосферы.
Как на самом деле будут выглядеть солнечные космические электростанции (СКЭС), сегодня точно сказать нельзя. А к проектированию СКЭС конструкторы приступили еще в конце 60-х гг. ХХ в.[3]
Путь энергии от приемника электромагнитного излучение Солнца к розетке в квартире или блоку питания станка может быть различным.
...
Список использованной литературы
1. А.Н. Проценко, «Энергия будущего» , М., «Мол. Гвардия», 1980.
2. Е.Б. Борисов, И.И. Пятнова , «Ключ к Солнцу», М., Мол. Гвардия, 1964.
3. Л.С. Юдасин, «Энергетика: проблемы и надежды», М., «Просвещение», 1990.
4. А.Н. Проценко, «Энергетика сегодня и завтра», М., «Мол. Гвардия», 1987.
5. Ю.Г. Чирков, «Занимательно об энергетике», М., «Мол. Гвардия», 1981.
6. Интернет: http://ru.wikipedia.org
Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям
СОДЕРЖАНИЕ
Введение 3
1. Энергия воды 4
1.1. Приливные электростанции 4
1.2. Энергия течений 6
2. Энергия ветра 8
3. Геотермальные электростанции 10
4. Солнечная энергия 12
5. Водородная экономика 14
6. Энергия из космоса 15
7. Термоядерная энергия 17
Вывод 18
Список использованой литературы 19
1.1. Приливные электростанции
Уровень воды на морских побережьях в течение суток меняется три раза. Такие колебания особо заметны в заливах и устьях рек, впадающих в море. Через каждые 6 ч 12 мин прилив сменяется отливом. Максимальная амплитуда приливов в разных местах нашей планеты неодинакова и составляет от 4 до 20 м.
Для устройства простейшей приливной электростанции (ПЭС) нужен бассейн – перекрытый плотиной залив или устье реки. В плотине имеются водопропускные отверстия и установлены турбины. Во время прилива вода поступает в бассейн. Когда уровни воды в бассейне и море сравняются, затворы водопропускных отверстий закрываются. С наступлением отлива уровень воды в море понижается, и, когда напор становится достаточным, турбины и соединенные с ним электрогенераторы начинают работать, а вода из бассейна постепенно уходит. Считается экономически целесообразным строительство ПЭС в районах с приливными колебаниями уровня моря не менее 4 м.
...
1.2. Энергия течений
Наиболее мощные течения океана – потенциальный источник энергии. Современный уровень техники позволяет извлекать энергию течений при скорости потока более 1 м/с. При этом мощность от 1 м2 поперечного сечения потока составляет около 1 кВт. Перспективным представляется использование таких мощных течений, как Гольфстрим и Куросио, несущих соответственно 83 и 55 млн. м3 воды со скоростью до 2 м/с, и Флоридского течения (30 млн. м3, скорость до 1,8 м/с).
Для океанской энергетики представляют интерес течения в проливах Гибралтарском, Ла-Манш, Курильских. Однако создание океанских электростанций на энергии течений связано пока с рядом технических трудностей, прежде всего с созданием энергетических установок больших размеров, представляющих угрозу судоходству.
...
2. Энергия ветра
Уже очень давно, видя, какие разрушения могут приносить бури и ураганы, человек задумывался над тем, нельзя ли использовать энергию ветра.
Энергия ветра очень велика. Ее запасы по оценкам Всемирной метеорологической организации, составляют 170 трлн кВт*ч в год. Эту энергию можно получать, не загрязняя окружающую среду. Но у ветра есть два существенных недостатка: его энергия сильно рассеяна в пространстве и он непредсказуем – часто меняет направление, вдруг затихает даже в самых ветреных районах земного шара, а иногда достигает такой силы, что ломает ветряки.
Строительство, содержание, ремонт ветроустановок, круглосуточно работающих в любую погоду под открытым небом, стоит недешево. Ветроэлектростанция такой же мощности, как ГЭС, ТЭЦ или АЭС, по сравнению с ними должна занимать большую площадь.
...
3. Геотермальные электростанции
Около 4% всех запасом воды на нашей планете сосредоточено под землей – в толщах горных пород. Воды, температура которых превышает 20º С, называют термальными (от греч. «терме» - «тепло», «жар»). Нагреваются подземные озера и реки в результате радиоактивных процессов и химических реакций, протекающих в недрах Земли. В районах вулканической деятельности на глубине 500-1000 м встречаются бассейны с температурой 150-250 ºС; вода в них находится под большим давлением и, поэтому не кипит. В горных областях термальные воды нередко выходят на поверхность в виде горячих источников с температурой до 90 ºС [1].
Люди научились использовать глубинное тепло Земли в хозяйственных целях. В странах, где термальные воды подходят близко к поверхности, сооружают геотермальные электростанции (геоТЭС). Они преобразуют тепловую энергию подземных источников в электрическую. В России первая геоТЭС мощностью 5 МВт была построена в 1966 г.
...
4. Солнечная энергия
Солнце изливает на Землю океан энергии. Человек буквально купается в этом океане, энергия везде. Солнечная энергия доступна всем и каждому. Она экологична – ничего не загрязняет, ничего не нарушает, она дает жизнь всему сущему на Земле. Больше того, эта энергия даровая, но при всех своих достоинствах и самая дорогая. Именно поэтому солнечные электростанции не так распространены, как электростанции других видов.
На острове Сицилия недалеко от известного своим неспокойным характером вулкана Этна еще в начале 80-х годов дала ток солнечная электростанции мощностью 1 МВт. Принцип ее работы – башенный. Зеркала фокусируют солнечные лучи на приемнике, расположенном на высоте 50 м. Там вырабатывается пар с температурой более 500º С, который приводит в действие традиционную турбину с подключенным к ней генератором тока. При переменной облачности недостаток солнечной энергии компенсируется паровым аккумулятором.
...
5. Водородная экономика
Один из самых необычных и, пожалуй, самых привлекательных сценариев энергетического будущего человечества открывает проект «Водородная экономика». Его суть заключается в замене ископаемого топлива водородом. Физический и химический смысл проекта ясен: основная энергия в нефти, газе, каменном угле и дереве запасена в виде углеводородов – соединений углерода с водородом. И не углерод, а именно водород дает при сжигании наибольшее количество тепловой энергии, превращаемой в механическую.
Водорода на земле огромное количество, причем огромные его запасы сосредоточены не в углеводородах, а в воде. Но если для получения энергии из нефти, газа, каменного угля и дерева их достаточно сжечь, то с водой так поступить нельзя: слишком прочно связаны в ней водород и кислород.
...
6. Энергия из космоса
Получать и использовать «чистую» солнечную энергию на поверхности Земли мешает атмосфера. Само собой напрашивается решение: разместить солнечные энергостанции в космосе, на около земной орбите. Там не будет атмосферных помех, невесомость позволит создавать многокилометровые конструкции, которые необходимы для «сбора» энергии солнца. У таких станций есть большое достоинство. Преобразование одного вида энергии в другой неизбежно сопровождается выделением тепла, и сброс его в космос позволит предотвратить опасное перегревание земной атмосферы.
Как на самом деле будут выглядеть солнечные космические электростанции (СКЭС), сегодня точно сказать нельзя. А к проектированию СКЭС конструкторы приступили еще в конце 60-х гг. ХХ в.[3]
Путь энергии от приемника электромагнитного излучение Солнца к розетке в квартире или блоку питания станка может быть различным.
...
Список использованной литературы
1. А.Н. Проценко, «Энергия будущего» , М., «Мол. Гвардия», 1980.
2. Е.Б. Борисов, И.И. Пятнова , «Ключ к Солнцу», М., Мол. Гвардия, 1964.
3. Л.С. Юдасин, «Энергетика: проблемы и надежды», М., «Просвещение», 1990.
4. А.Н. Проценко, «Энергетика сегодня и завтра», М., «Мол. Гвардия», 1987.
5. Ю.Г. Чирков, «Занимательно об энергетике», М., «Мол. Гвардия», 1981.
6. Интернет: http://ru.wikipedia.org
Купить эту работу vs Заказать новую | ||
---|---|---|
2 раза | Куплено | Выполняется индивидуально |
Не менее 40%
Исполнитель, загружая работу в «Банк готовых работ» подтверждает, что
уровень оригинальности
работы составляет не менее 40%
|
Уникальность | Выполняется индивидуально |
Сразу в личном кабинете | Доступность | Срок 1—4 дня |
200 ₽ | Цена | от 200 ₽ |
Не подошла эта работа?
В нашей базе 85111 Рефератов — поможем найти подходящую