Рассчитай точную стоимость своей работы и получи промокод на скидку 200 ₽
Найди эксперта для помощи в учебе
Найти эксперта
+2
Пример заказа на Автор24
Студенческая работа на тему:
Через точку К сторони АС трикутника АВС проведено площину а паралельну
Создан заказ №10128183
1 октября 2023

Через точку К сторони АС трикутника АВС проведено площину а паралельну

Как заказчик описал требования к работе:
Через точку К сторони АС трикутника АВС проведено площину а паралельну до прямої АВ, площина а перетинає пряму ВС в точці М. Знайдіть довжину АВ, якщо AK:CK = 2:5, КМ=22 см.
Заказчик
заплатил
20 ₽
Заказчик не использовал рассрочку
Гарантия сервиса
Автор24
20 дней
Заказчик принял работу без использования гарантии
2 октября 2023
Заказ завершен, заказчик получил финальный файл с работой
5
Заказ выполнил
anatoliy17
5
скачать
Через точку К сторони АС трикутника АВС проведено площину а паралельну.jpg
2023-10-05 16:19
Последний отзыв студента о бирже Автор24
Общая оценка
5
Положительно
Автор большая молодец! Всегда готова к диалогу, работы выполняет безупречно, быстро и аккуратно - очень рекомендуем! Большое спасибо!

Хочешь такую же работу?

Оставляя свои контактные данные и нажимая «Создать задание», я соглашаюсь пройти процедуру регистрации на Платформе, принимаю условия Пользовательского соглашения и Политики конфиденциальности в целях заключения соглашения.
Хочешь написать работу самостоятельно?
Используй нейросеть
Мы создали собственный искусственный интеллект,
чтобы помочь тебе с учебой за пару минут 👇
Использовать нейросеть
Тебя также могут заинтересовать
123
Реферат
Геометрия
Стоимость:
300 ₽
Методы решения стереометрических задач
Реферат
Геометрия
Стоимость:
300 ₽
4 задачи по теме Комбинации пространственных тел
Решение задач
Геометрия
Стоимость:
150 ₽
Решение задач
Решение задач
Геометрия
Стоимость:
150 ₽
задача
Решение задач
Геометрия
Стоимость:
150 ₽
Методы изображений
Решение задач
Геометрия
Стоимость:
150 ₽
Читай полезные статьи в нашем
Формулы параллелограмма, трапеции, квадрата, прямоугольника и ромба
Введем для начала понятие многоугольника вообще.
Четырехугольники могут быть выпуклыми и невыпуклыми.
Классическими примерами выпуклых четырехугольников являются квадрат, прямоугольник, трапеция, ромб, параллелограмм. Рассмотрим далее эти фигуры по отдельности.
подробнее
Проекция вектора на ось. Как найти проекцию вектора
Для понятия проекции вектора на ось или какой-либо другой вектор существуют понятия ее геометрической проекции и числовой (или алгебраической) проекции. Результатом геометрической проекции будет вектор, а результатом алгебраической – неотрицательное действительное число. Но перед тем, как перейти к этим понятиям вспомним необходимую информацию.
Основное понятие – непосредственно понятие вектора. Дл...
подробнее
Как найти векторное произведение векторов
Для того чтобы мы могли ввести понятие векторного произведения векторов, нужно сначала разобраться с таким понятие, как угол между этими векторами.
Пусть нам даны два вектора \overline{α} и \overline{β} . Возьмем в пространстве какую-либо точку O и отложим от нее векторы \overline{α}=\overline{OA} и \overline{β}=\overline{OB} , тогда угол AOB будет называться углом между этими векторами (...
подробнее
Как найти смешанное произведение векторов
Для того чтобы мы могли ввести понятие смешанного произведения векторов, нужно сначала вспомнить понятия скалярного и векторного произведений этих векторов.
Математически это может выглядеть следующим образом:
\overline{α}\overline{β}=|\overline{α}||\overline{β}|cos⁡∠(\overline{α},\overline{β})
Также, помимо того, как из самого определения 1, для нахождения скалярного произведения можно пользоватьс...
подробнее
Формулы параллелограмма, трапеции, квадрата, прямоугольника и ромба
Введем для начала понятие многоугольника вообще.
Четырехугольники могут быть выпуклыми и невыпуклыми.
Классическими примерами выпуклых четырехугольников являются квадрат, прямоугольник, трапеция, ромб, параллелограмм. Рассмотрим далее эти фигуры по отдельности.
подробнее
Проекция вектора на ось. Как найти проекцию вектора
Для понятия проекции вектора на ось или какой-либо другой вектор существуют понятия ее геометрической проекции и числовой (или алгебраической) проекции. Результатом геометрической проекции будет вектор, а результатом алгебраической – неотрицательное действительное число. Но перед тем, как перейти к этим понятиям вспомним необходимую информацию.
Основное понятие – непосредственно понятие вектора. Дл...
подробнее
Как найти векторное произведение векторов
Для того чтобы мы могли ввести понятие векторного произведения векторов, нужно сначала разобраться с таким понятие, как угол между этими векторами.
Пусть нам даны два вектора \overline{α} и \overline{β} . Возьмем в пространстве какую-либо точку O и отложим от нее векторы \overline{α}=\overline{OA} и \overline{β}=\overline{OB} , тогда угол AOB будет называться углом между этими векторами (...
подробнее
Как найти смешанное произведение векторов
Для того чтобы мы могли ввести понятие смешанного произведения векторов, нужно сначала вспомнить понятия скалярного и векторного произведений этих векторов.
Математически это может выглядеть следующим образом:
\overline{α}\overline{β}=|\overline{α}||\overline{β}|cos⁡∠(\overline{α},\overline{β})
Также, помимо того, как из самого определения 1, для нахождения скалярного произведения можно пользоватьс...
подробнее
Теперь вам доступен полный отрывок из работы
Также на e-mail вы получите информацию о подробном расчете стоимости аналогичной работы