Автор24

Информация о работе

Подробнее о работе

Страница работы

Проектирование электронного курса по методам решения задач математической физики в среде Maple

  • 70 страниц
  • 2015 год
  • 178 просмотров
  • 0 покупок
Автор работы

EkaterinaKonstantinovna

Большой опыт в написании работ, очень давно работаю на этом ресурсе, выполнила более 15000 заказов

2240 ₽

Работа будет доступна в твоём личном кабинете после покупки

Гарантия сервиса Автор24

Уникальность не ниже 50%

Фрагменты работ

Для нахождения решения научных и инженерных задач постоянно возникает потребность математического описания заданных систем. Математическая модель очень часто сводится к дифференциальным уравнениям или системам дифференциальных уравнений. Примером дифференциальных уравнений, которые возникают при решении такого рода задач, являются уравнения в частных производных. Известные методы точного интегрирования дифференциальных уравнений позволяют находить решение в виде аналитических функций, однако эти методы применимы для достаточно ограниченного класса функций. Большинство уравнений и их систем, которые встречаются при решении практических задач нельзя проинтегрировать с помощью этих методов.
В таких случаях применяют численные методы решения, которые дают решение дифференциальных уравнений и их систем не в виде аналитических функций, а в виде таблиц значений функций в зависимости от значений переменных. Применяется несколько методов численного нахождения решений дифференциальных уравнений, которые отличаются друг от друга по сложности вычислений и точности результатов.
В настоящее время существует большое число различных профессиональных программных продуктов (например, Maple, MаthСАD, MаtLАB и т.д.), применяя которые, можно, задав исходные данные, найти решение большого количества задач.
Применение таких программных продуктов дает возможность значительно сократит затраты времени и ресурсов при решении ряда важнейших задач. Следует отметить, что применение этих программных продуктов без тщательного анализа методов, с помощью которых решаются задачи, нельзя дать гарантию, что задачи будут решены верно.
Современные технологии позволяют студентам обучаться не только на аудиторных занятиях в ВУЗе, но и удаленно. В сети Internet можно найти множество ресурсов по решению волновых уравнений, где представлена информация о методах решения, но она не всегда систематизирована, не всегда для разъяснения используются примеры, часто материал перегружен теорией (выводами и доказательствами). К тому же не все описанные методики поясняются на примерах, что значительно упростило бы понимание материала.
Целью выполнения данного дипломного проекта является создание обучающего электронного ресурса для нахождения решений дифференциальных уравнений в частных производных, реализованного при помощи пакета Maple.
Для достижения цели дипломной работы поставлены следующие задачи:
1. Изучить предметную область – решение уравнений в частных производных методом Фурье (методом разделения переменных) в случае уравнений параболического, гиперболического и эллиптического типов;
2. Рассмотреть детали применения основных алгоритмов решения с использованием пакета Maple;
3. Создать электронный ресурс;
4. Разработать методику применения данного электронного средства обучения.
Теоретической базой дипломной работы являются труды отечественных и зарубежных ученых, а также техническая документация по среде математических вычислений Maple.
В дальнейшем этот курс будет размещен на образовательном портале ГУМРФ имени адмирала С.О. Макарова для доступа к нему студентов и курсантов ВУЗа.
Курс состоит из модулей с отдельной темой в каждом из них, что позволяет в дальнейшем расширить курс, добавив в него новые разделы на усмотрение преподавателя.

Введение 2
Глава 1. Дифференциальные уравнения в частных производных. Методы их решения. 4
1.1 Дифференциальные уравнения в частных производных 4
1.2 Использование дифференциальных уравнений с частными производными в науке и технике 6
Глава 2. Дистанционное обучение. Постановка задачи 9
2.1 Дистанционное обучение в ГУМРФ 9
2.2. Постановка задачи 9
Глава 3. Основные задачи теории ДУ с частными производными. 11
3.1 Распространение тепла в стержне 11
3.2. Вывод волнового уравнения 12
3.3. Общие сведения об уравнении Лапласа. 13
3.3.1. Уравнение Лапласа в декартовых и в полярных координатах 13
3.2.4. Решение задачи Дирихле в круге методом Фурье 15
Глава 4. Метод Фурье для решения уравнений 22
Глава 5. Разработка электронного курса 26
5.1 Архитектура проекта. 26
5.2. Главный модуль 27
5.3. Обучающие модули 27
Заключение 69
Библиографический список 70


Современные ЭВМ дали в руки исследователей эффективное средство для математического моделирования сложных задач науки и техники. Именно поэтому количественные методы исследования в настоящее время проникают практически во все сферы человеческой деятельности, а математические модели становятся средством познания. С необходимостью решения крупных научно-технических проблем и распространением ЭВМ связано бурное развитие численных методов и становление новой науки – вычислительной математики. Численными методами решаются многие задачи математической физики, описанные, в частности, интегральными уравнениями, которые применяются практически во всех областях жизни человека.
В результате проделанной работы был реализован электронный курс по методикам решения уравнений в частных производных различных типов. Данный электронный курс будет размещен на образовательном портале ГУМРФ имени адмирала С.О. Макарова. В перспективе курс может быть расширен, путем добавления в него новых модулей по недостающим темам.
Использовать этот проект смогут как студенты непосредственно для изучения интересующих их тем, так и преподаватели. Для преподавателей это может быть демонстрационный материал на внутриаудиторных занятиях, материал для дополнительного изучения студентами, источник домашних заданий по решению интегральных уравнений.
В рамках дипломной работы использовался пакет Maple, как наиболее распространенный и понятный большинству студентов инструмент. Цель курса – научить решать интегральные уравнения самостоятельно, даже без помощи технических средств, а потому в работе используется Maple, исключительно как вспомогательный инструмент для решения простых, но громоздких операций, тем самым он экономит время и не отвлекает от основной цели курса.
По итогу изучения курса студент получит навыки решения интегральных уравнений, которые он проверит решив проверочные задания. Задача, поставленная в дипломной работе достигнута.

1. Бицадзе А.В. Некоторые классы уравнений в частных производных. М. “Наука”.1981.
2. Бицадзе А.В. Уравнения смешанного типа. М.1959.
3. .Владимиров В.С. Обобщенные функции в математической физике. М. “Наука”.1979.
4. Соболев С.Л. Уравнения математической физики. М. “Гостехиздат”.1954.
5. Смирнов В.И. Курс высшей математики, Т.2.,Т.4.М. “Физматгиз”. 1958.
6. Смирнов М.М. Уравнения смешанного типа. М.1985.
7. Хёрмандер Л. Линейные дифференциальные уравнения с частными производными. М. “Мир”. 1965.
8. Петровский И.Г. Лекции по теории интегральных уравнений. М. Из-во МГУ.1984.
9. Гилбарг Д., Трудингер Н. Эллиптические дифференциальные уравнения с частными производными второго порядка. М. “Наука”.1989.
10. Годунов С.К. Уравнения математической физики. М. “Наука”.1971.
11. Трикоми Ф. Лекции по уравнениям в частных производных. М. “ИЛ”.1957.
12. Алексеев Е.Р., Чеснокова О.Р. Решение задач вычислительной математики в пакетах Mathcad 12, MATLAB 7, Maple 9. – М.:НТ Пресс, 2006, 496 с.
13. Васильева А.Б., Тихонов Н.А. Интегральные уравнения. – 2-е изд., стереот. – М.: ФИЗМАТЛИТ, 2002. – 160 с.
14. Голоскоков Д.П. Уравнения математической физики. Решение задач в системе Maple. Учебник для вузов – СПб.:Питер, 2004, – 539 с.
15. Верлань А.Ф., Сизиков В.С. Интегральные уравнения: методы, алгоритмы, программы. Справочное пособие. – Киев: Наукова Думка, 1986, 544 с.
16. Краснов М.Л., Киселев А.И., Макаренко Г.И. Интегральные уравнения: Задачи и примеры с подробными решениями: Учебное пособие. Изд. 3-е, испр. – М.: Едиториал УРСС, 2003. – 192 с.
17. Положение об образовательном портале ГУМРФ имени адмирала С.О. Макарова, 2014
18. Канторович Л.В., Крылов В.И. Приближенные методы высшего анализа. 3-е изд. – М., СПб: Государственное издательство технико-теоретической литературы, 1950, 696 с.

Форма заказа новой работы

Не подошла эта работа?

Закажи новую работу, сделанную по твоим требованиям

Оставляя свои контактные данные и нажимая «Заказать Дипломную работу», я соглашаюсь пройти процедуру регистрации на Платформе, принимаю условия Пользовательского соглашения и Политики конфиденциальности в целях заключения соглашения.

Фрагменты работ

Для нахождения решения научных и инженерных задач постоянно возникает потребность математического описания заданных систем. Математическая модель очень часто сводится к дифференциальным уравнениям или системам дифференциальных уравнений. Примером дифференциальных уравнений, которые возникают при решении такого рода задач, являются уравнения в частных производных. Известные методы точного интегрирования дифференциальных уравнений позволяют находить решение в виде аналитических функций, однако эти методы применимы для достаточно ограниченного класса функций. Большинство уравнений и их систем, которые встречаются при решении практических задач нельзя проинтегрировать с помощью этих методов.
В таких случаях применяют численные методы решения, которые дают решение дифференциальных уравнений и их систем не в виде аналитических функций, а в виде таблиц значений функций в зависимости от значений переменных. Применяется несколько методов численного нахождения решений дифференциальных уравнений, которые отличаются друг от друга по сложности вычислений и точности результатов.
В настоящее время существует большое число различных профессиональных программных продуктов (например, Maple, MаthСАD, MаtLАB и т.д.), применяя которые, можно, задав исходные данные, найти решение большого количества задач.
Применение таких программных продуктов дает возможность значительно сократит затраты времени и ресурсов при решении ряда важнейших задач. Следует отметить, что применение этих программных продуктов без тщательного анализа методов, с помощью которых решаются задачи, нельзя дать гарантию, что задачи будут решены верно.
Современные технологии позволяют студентам обучаться не только на аудиторных занятиях в ВУЗе, но и удаленно. В сети Internet можно найти множество ресурсов по решению волновых уравнений, где представлена информация о методах решения, но она не всегда систематизирована, не всегда для разъяснения используются примеры, часто материал перегружен теорией (выводами и доказательствами). К тому же не все описанные методики поясняются на примерах, что значительно упростило бы понимание материала.
Целью выполнения данного дипломного проекта является создание обучающего электронного ресурса для нахождения решений дифференциальных уравнений в частных производных, реализованного при помощи пакета Maple.
Для достижения цели дипломной работы поставлены следующие задачи:
1. Изучить предметную область – решение уравнений в частных производных методом Фурье (методом разделения переменных) в случае уравнений параболического, гиперболического и эллиптического типов;
2. Рассмотреть детали применения основных алгоритмов решения с использованием пакета Maple;
3. Создать электронный ресурс;
4. Разработать методику применения данного электронного средства обучения.
Теоретической базой дипломной работы являются труды отечественных и зарубежных ученых, а также техническая документация по среде математических вычислений Maple.
В дальнейшем этот курс будет размещен на образовательном портале ГУМРФ имени адмирала С.О. Макарова для доступа к нему студентов и курсантов ВУЗа.
Курс состоит из модулей с отдельной темой в каждом из них, что позволяет в дальнейшем расширить курс, добавив в него новые разделы на усмотрение преподавателя.

Введение 2
Глава 1. Дифференциальные уравнения в частных производных. Методы их решения. 4
1.1 Дифференциальные уравнения в частных производных 4
1.2 Использование дифференциальных уравнений с частными производными в науке и технике 6
Глава 2. Дистанционное обучение. Постановка задачи 9
2.1 Дистанционное обучение в ГУМРФ 9
2.2. Постановка задачи 9
Глава 3. Основные задачи теории ДУ с частными производными. 11
3.1 Распространение тепла в стержне 11
3.2. Вывод волнового уравнения 12
3.3. Общие сведения об уравнении Лапласа. 13
3.3.1. Уравнение Лапласа в декартовых и в полярных координатах 13
3.2.4. Решение задачи Дирихле в круге методом Фурье 15
Глава 4. Метод Фурье для решения уравнений 22
Глава 5. Разработка электронного курса 26
5.1 Архитектура проекта. 26
5.2. Главный модуль 27
5.3. Обучающие модули 27
Заключение 69
Библиографический список 70


Современные ЭВМ дали в руки исследователей эффективное средство для математического моделирования сложных задач науки и техники. Именно поэтому количественные методы исследования в настоящее время проникают практически во все сферы человеческой деятельности, а математические модели становятся средством познания. С необходимостью решения крупных научно-технических проблем и распространением ЭВМ связано бурное развитие численных методов и становление новой науки – вычислительной математики. Численными методами решаются многие задачи математической физики, описанные, в частности, интегральными уравнениями, которые применяются практически во всех областях жизни человека.
В результате проделанной работы был реализован электронный курс по методикам решения уравнений в частных производных различных типов. Данный электронный курс будет размещен на образовательном портале ГУМРФ имени адмирала С.О. Макарова. В перспективе курс может быть расширен, путем добавления в него новых модулей по недостающим темам.
Использовать этот проект смогут как студенты непосредственно для изучения интересующих их тем, так и преподаватели. Для преподавателей это может быть демонстрационный материал на внутриаудиторных занятиях, материал для дополнительного изучения студентами, источник домашних заданий по решению интегральных уравнений.
В рамках дипломной работы использовался пакет Maple, как наиболее распространенный и понятный большинству студентов инструмент. Цель курса – научить решать интегральные уравнения самостоятельно, даже без помощи технических средств, а потому в работе используется Maple, исключительно как вспомогательный инструмент для решения простых, но громоздких операций, тем самым он экономит время и не отвлекает от основной цели курса.
По итогу изучения курса студент получит навыки решения интегральных уравнений, которые он проверит решив проверочные задания. Задача, поставленная в дипломной работе достигнута.

1. Бицадзе А.В. Некоторые классы уравнений в частных производных. М. “Наука”.1981.
2. Бицадзе А.В. Уравнения смешанного типа. М.1959.
3. .Владимиров В.С. Обобщенные функции в математической физике. М. “Наука”.1979.
4. Соболев С.Л. Уравнения математической физики. М. “Гостехиздат”.1954.
5. Смирнов В.И. Курс высшей математики, Т.2.,Т.4.М. “Физматгиз”. 1958.
6. Смирнов М.М. Уравнения смешанного типа. М.1985.
7. Хёрмандер Л. Линейные дифференциальные уравнения с частными производными. М. “Мир”. 1965.
8. Петровский И.Г. Лекции по теории интегральных уравнений. М. Из-во МГУ.1984.
9. Гилбарг Д., Трудингер Н. Эллиптические дифференциальные уравнения с частными производными второго порядка. М. “Наука”.1989.
10. Годунов С.К. Уравнения математической физики. М. “Наука”.1971.
11. Трикоми Ф. Лекции по уравнениям в частных производных. М. “ИЛ”.1957.
12. Алексеев Е.Р., Чеснокова О.Р. Решение задач вычислительной математики в пакетах Mathcad 12, MATLAB 7, Maple 9. – М.:НТ Пресс, 2006, 496 с.
13. Васильева А.Б., Тихонов Н.А. Интегральные уравнения. – 2-е изд., стереот. – М.: ФИЗМАТЛИТ, 2002. – 160 с.
14. Голоскоков Д.П. Уравнения математической физики. Решение задач в системе Maple. Учебник для вузов – СПб.:Питер, 2004, – 539 с.
15. Верлань А.Ф., Сизиков В.С. Интегральные уравнения: методы, алгоритмы, программы. Справочное пособие. – Киев: Наукова Думка, 1986, 544 с.
16. Краснов М.Л., Киселев А.И., Макаренко Г.И. Интегральные уравнения: Задачи и примеры с подробными решениями: Учебное пособие. Изд. 3-е, испр. – М.: Едиториал УРСС, 2003. – 192 с.
17. Положение об образовательном портале ГУМРФ имени адмирала С.О. Макарова, 2014
18. Канторович Л.В., Крылов В.И. Приближенные методы высшего анализа. 3-е изд. – М., СПб: Государственное издательство технико-теоретической литературы, 1950, 696 с.

Купить эту работу

Проектирование электронного курса по методам решения задач математической физики в среде Maple

2240 ₽

или заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 3000 ₽

Гарантии Автор24

Изображения работ

Страница работы
Страница работы
Страница работы

Понравилась эта работа?

или

31 мая 2017 заказчик разместил работу

Выбранный эксперт:

Автор работы
EkaterinaKonstantinovna
4.2
Большой опыт в написании работ, очень давно работаю на этом ресурсе, выполнила более 15000 заказов
Купить эту работу vs Заказать новую
0 раз Куплено Выполняется индивидуально
Не менее 40%
Исполнитель, загружая работу в «Банк готовых работ» подтверждает, что уровень оригинальности работы составляет не менее 40%
Уникальность Выполняется индивидуально
Сразу в личном кабинете Доступность Срок 1—6 дней
2240 ₽ Цена от 3000 ₽

5 Похожих работ

Дипломная работа

Колебания маятника переменной длины

Уникальность: от 40%
Доступность: сразу
2800 ₽
Дипломная работа

Магнитогидродинамические волны в плазме

Уникальность: от 40%
Доступность: сразу
2800 ₽
Дипломная работа

Разработка вибратора для возбуждения колебательных деталей

Уникальность: от 40%
Доступность: сразу
2240 ₽
Дипломная работа

ВЛИЯНИЕ ИММЕРСИОННОГО ПРОСВЕТЛЕНИЯ НА ФРАКТАЛЬНЫЕ И СПЕКТРАЛЬНЫЕ СВОЙСТВА БИОЛОГИЧЕСКОЙ ТКАНИ

Уникальность: от 40%
Доступность: сразу
3000 ₽
Дипломная работа

Измерение температуры

Уникальность: от 40%
Доступность: сразу
800 ₽

Отзывы студентов

Отзыв Nik0lka об авторе EkaterinaKonstantinovna 2018-06-20
Дипломная работа

Автор сделал все очень грамотно, на вопросы выслал учебный материал, ответил на все комментарии к заказу. Спасибо за сотрудничество!

Общая оценка 5
Отзыв Robokop5215 об авторе EkaterinaKonstantinovna 2015-06-05
Дипломная работа

работа сделана очень быстро и на мой взгляд качественно. Повезу куратору. Спасибо автору заранее.

Общая оценка 5
Отзыв vperde666 об авторе EkaterinaKonstantinovna 2014-12-24
Дипломная работа

Работой доволен, все в срок)

Общая оценка 5
Отзыв evgenii_4 об авторе EkaterinaKonstantinovna 2015-07-23
Дипломная работа

ОТЛИЧНО

Общая оценка 5

другие учебные работы по предмету

Готовая работа

Осциллятор Ван-дер-Поля исследования системы

Уникальность: от 40%
Доступность: сразу
1000 ₽
Готовая работа

Уравнение теплового баланса

Уникальность: от 40%
Доступность: сразу
250 ₽
Готовая работа

Закон сохранения массы веществ

Уникальность: от 40%
Доступность: сразу
200 ₽
Готовая работа

Эссе на тему: «Энергосиловые установки в 2050 году»

Уникальность: от 40%
Доступность: сразу
40 ₽
Готовая работа

Физика в судостроении: Основы проектирования и эффективности верфей

Уникальность: от 40%
Доступность: сразу
200 ₽
Готовая работа

Государство и бизнес в эпоху постиндустриализма и глобализации сравнительный анализ моделей взаимодействия в странах Запада и постсоциалистических стр

Уникальность: от 40%
Доступность: сразу
600 ₽
Готовая работа

Физика плюсы и минусы использования холодильников и кондиционеров

Уникальность: от 40%
Доступность: сразу
150 ₽
Готовая работа

Основные законы физики на примере фильма "Интерстеллар"

Уникальность: от 40%
Доступность: сразу
120 ₽
Готовая работа

Рецензия на статью «Наглядно о том, почему скорость света не такая быстрая»

Уникальность: от 40%
Доступность: сразу
30 ₽
Готовая работа

ФОРМИРОВАНИЕ ПОЗНАВАТЕЛЬНЫХ УУД ПРИ ИЗУЧЕНИИ ЖИДКОСТИ В КУРСЕ ФИЗИКИ СРЕДНЕЙ ШКОЛЫ

Уникальность: от 40%
Доступность: сразу
5000 ₽
Готовая работа

Защита металлов от коррозии -1

Уникальность: от 40%
Доступность: сразу
2000 ₽
Готовая работа

Определение ускорения свободного падения с помощью математического Маятника_вариант97 (l=110см,n=16-20)

Уникальность: от 40%
Доступность: сразу
270 ₽