Автор,молодчина,работа выполнена хорошо)))
Подробнее о работе
Гарантия сервиса Автор24
Уникальность не ниже 50%
1. РОЛЬ НАУКИ В МЕХАНИКЕ СПЛОШНОЙ СРЕДЫ [1]
1.1. Введение в механику сплошной среды
Механика сплошной среды (МСС) – наука о движении газообразных, жидких и твердых деформируемых тел.
Основой МСС являются подходы и методы, развитые теоретической механикой, которая рассматривает движения материальной точки, дискретных систем материальных точек абсолютно твердого тела с изменяющимися расстояниями между ними во время движения.
Как и теоретическая механика, МСС инструментом исследования физических тел использует модели процессов или явлений. В ряде случает, например, при движении газов, процессы, проистекающие в деформируемых средах, тесно связаны с термодинамическими явлениями в этих средах. Поэтому в основе МСС лежат как законы теоретической механики, так и законы термодинамики.
МСС является теоретической базой для таких дисциплин как гидромеханика ньютоновских и неньютоновских жидкостей, газовая динамика, подземная гидромеханика, теория упругости, теория пластичности.
1.2. Основные положения
Гипотеза сплошности
Явления, рассматриваемые в МСС, носят макроскопический характер. Это позволяет не рассматривать молекулярное строение вещества, а рассматривать физические тела как сплошные среды. Газ, жидкость, твердое деформированное тело рассматривают как среду непрерывным образом заполняющих часть пространства, т.е. представляющих собой непрерывный континуум, состоящий из множества дискретных материальных точек.
С физической точки зрения принятие модели сплошности означает, что при макроскопическом описании всякий «бесконечно малый объем» содержит достаточно большое число молекул. Например, кубик воздуха с ребром 10-3 мм при нормальных условиях содержит 2•106 молекул. Отсюда видено, что предлагаемая идеализация не будет применимой лишь при очень больших разряжения. Газ и жидкость называют жидкостью, только газ – сжимаемая, а капельная жидкость –несжимаемая жидкость.
1.3. Области и разделы МСС
МСС возникла в связи с необходимостью решения таких задач, как установление закономерностей при истечении жидкостей из сосудов, просачивание жидкости через грунт, расчет прогиба балок, находящихся под нагрузкой и т.д. С помощью и на основе методов, развитых в теоретической механике, в МСС рассматриваются движение тел с изменяющимися расстояниями между точками этих тел во время движения.
В настоящее время МСС (механику сплошной среды) разделяют на две крупные области МЖГ (механику жидкости и газа), которая именуется гидромеханикой, и МДТ механика твердо деформированного тела.
Гидромеханика включает в себя следующие разделы:
1) механика идеальной жидкости; 2) механика вязкой жидкости (или ньютоновской жидкости); 3) механика невязкой жидкости (или неньютоновской жидкости); 4) механика турбулентных течений. К гидромеханике примыкают механика фильтрационных течений и ряд других разделов механики.
Механика деформированных тел состоит из:
1) теория упругости; 2) теория пластичности; 3) теория ползучести;4) механика сыпучих тел. К МДТ примыкают теория прочности и механика разрушения.
Такое разделение МСС связано с тем, что различные тела даже при одних и тех же условиях ведут себя по-разному. Поэтому определяющие параметры и функции, граничные условия и дифференциальные уравнения так же не одинаковы.
1.4. Основные задачи механики сплошных сред в бурении
Основной задачей механики сплошных сред в бурении – снижение затрат времени и материальных средств при строительстве и эксплуатации скважин, предупреждение и ликвидация аварий.
Примерами могут служить задачи связанные с: разрушением горных пород;
транспортировкой вырубленной породы на поверхность; определением гидравлических потерь в скважине; интенсивностью поглощения бурового раствора; оценка устойчивости и прочности стенок скважин; и др.
1.5. Инструментарий МСС
Методы достижения поставленных задач основываются на фундаментальных законах ньютоновской механики (сохранения массы, количества движения, энергий), законах термодинамики, уравнений состояния, и большой совокупности экспериментальных данных.
1. РОЛЬ НАУКИ В МЕХАНИКЕ СПЛОШНОЙ СРЕДЫ
2. СРЕДЫ, ПРИМЕНЯЕМЫЕ И ВСТРЕЧАЮЩИЕСЯ ПРИ БУРЕНИИ НЕФТЯНЫХ И ГАЗОВЫХ СКВАЖИН
3. УРАВНЕНИЯ ГИДРОМЕХАНИКИ (МСС)
4. ЗАДАЧИ ГИДРОМЕХАНИКИ В БУРЕНИИ
5. УРАВНЕНИЯ МЕХАНИКИ ДЕФОРМИРОВАННОГО ТЕЛА (МДТ)
В курсе лекций лаконично изложены основные свойства и законы жидкостей и газов (применительно к нефти, попутному нефтяному и природному газу, газоконденсату). Отлично подойдет как готовые ответы к экзаменационным вопросам. Прилагается альбом с графическими иллюстрациями.
Литература
1. Рабинович Н.Р. Инженерные задачи механики сплошной среды в бурении. –М.: Недра, 1989. – 270 с.
2. Рабира. Х. Технология бурения нефтяных скважин. /Под. ред. В.Г. Григулецкого. - М.: Недра, 1989. - 413 с.
3. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика. Учебник для вузов. – М.-Ижевск: - Институт компьютерных исследований, 2005. – 544 с.
Дополнительная литература
1. Справочник по гидравлике /Под. ред. В.А. Большакова. – Киев, Вища школа,
1977. – 280 с.
2. Кутателадзе С.С, основы теории теплообмена. – Новосибирск: Наука, 1970. – 658 с.
3. Геологические основы разработки нефтяных месторождений. – М.: Недра, 1975. – 534 с.7. Гиматудинов Ш.К. Физика нефтяного и газового пласта. – М.: Недра, 1971. – 309 с.
4. Амикс Д., Басе Д., Уайтинг Р, Физика нефтяного пласта. – М.: Гостоптехизтат, 1962. – 572 с.
5. Данилов В.Л., Кац Р. М. Гидродинамические расчеты взаимного вытеснения жидкостей в пористой среде. – М.: Недра, 1980. – 264 с.
6. Сидоров Н.А. Бурение и эксплуатация нефтяных и газовых скважин. учебник для техникумов. – М.: Недра, 1982, - 376 с.
Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям
1. РОЛЬ НАУКИ В МЕХАНИКЕ СПЛОШНОЙ СРЕДЫ [1]
1.1. Введение в механику сплошной среды
Механика сплошной среды (МСС) – наука о движении газообразных, жидких и твердых деформируемых тел.
Основой МСС являются подходы и методы, развитые теоретической механикой, которая рассматривает движения материальной точки, дискретных систем материальных точек абсолютно твердого тела с изменяющимися расстояниями между ними во время движения.
Как и теоретическая механика, МСС инструментом исследования физических тел использует модели процессов или явлений. В ряде случает, например, при движении газов, процессы, проистекающие в деформируемых средах, тесно связаны с термодинамическими явлениями в этих средах. Поэтому в основе МСС лежат как законы теоретической механики, так и законы термодинамики.
МСС является теоретической базой для таких дисциплин как гидромеханика ньютоновских и неньютоновских жидкостей, газовая динамика, подземная гидромеханика, теория упругости, теория пластичности.
1.2. Основные положения
Гипотеза сплошности
Явления, рассматриваемые в МСС, носят макроскопический характер. Это позволяет не рассматривать молекулярное строение вещества, а рассматривать физические тела как сплошные среды. Газ, жидкость, твердое деформированное тело рассматривают как среду непрерывным образом заполняющих часть пространства, т.е. представляющих собой непрерывный континуум, состоящий из множества дискретных материальных точек.
С физической точки зрения принятие модели сплошности означает, что при макроскопическом описании всякий «бесконечно малый объем» содержит достаточно большое число молекул. Например, кубик воздуха с ребром 10-3 мм при нормальных условиях содержит 2•106 молекул. Отсюда видено, что предлагаемая идеализация не будет применимой лишь при очень больших разряжения. Газ и жидкость называют жидкостью, только газ – сжимаемая, а капельная жидкость –несжимаемая жидкость.
1.3. Области и разделы МСС
МСС возникла в связи с необходимостью решения таких задач, как установление закономерностей при истечении жидкостей из сосудов, просачивание жидкости через грунт, расчет прогиба балок, находящихся под нагрузкой и т.д. С помощью и на основе методов, развитых в теоретической механике, в МСС рассматриваются движение тел с изменяющимися расстояниями между точками этих тел во время движения.
В настоящее время МСС (механику сплошной среды) разделяют на две крупные области МЖГ (механику жидкости и газа), которая именуется гидромеханикой, и МДТ механика твердо деформированного тела.
Гидромеханика включает в себя следующие разделы:
1) механика идеальной жидкости; 2) механика вязкой жидкости (или ньютоновской жидкости); 3) механика невязкой жидкости (или неньютоновской жидкости); 4) механика турбулентных течений. К гидромеханике примыкают механика фильтрационных течений и ряд других разделов механики.
Механика деформированных тел состоит из:
1) теория упругости; 2) теория пластичности; 3) теория ползучести;4) механика сыпучих тел. К МДТ примыкают теория прочности и механика разрушения.
Такое разделение МСС связано с тем, что различные тела даже при одних и тех же условиях ведут себя по-разному. Поэтому определяющие параметры и функции, граничные условия и дифференциальные уравнения так же не одинаковы.
1.4. Основные задачи механики сплошных сред в бурении
Основной задачей механики сплошных сред в бурении – снижение затрат времени и материальных средств при строительстве и эксплуатации скважин, предупреждение и ликвидация аварий.
Примерами могут служить задачи связанные с: разрушением горных пород;
транспортировкой вырубленной породы на поверхность; определением гидравлических потерь в скважине; интенсивностью поглощения бурового раствора; оценка устойчивости и прочности стенок скважин; и др.
1.5. Инструментарий МСС
Методы достижения поставленных задач основываются на фундаментальных законах ньютоновской механики (сохранения массы, количества движения, энергий), законах термодинамики, уравнений состояния, и большой совокупности экспериментальных данных.
1. РОЛЬ НАУКИ В МЕХАНИКЕ СПЛОШНОЙ СРЕДЫ
2. СРЕДЫ, ПРИМЕНЯЕМЫЕ И ВСТРЕЧАЮЩИЕСЯ ПРИ БУРЕНИИ НЕФТЯНЫХ И ГАЗОВЫХ СКВАЖИН
3. УРАВНЕНИЯ ГИДРОМЕХАНИКИ (МСС)
4. ЗАДАЧИ ГИДРОМЕХАНИКИ В БУРЕНИИ
5. УРАВНЕНИЯ МЕХАНИКИ ДЕФОРМИРОВАННОГО ТЕЛА (МДТ)
В курсе лекций лаконично изложены основные свойства и законы жидкостей и газов (применительно к нефти, попутному нефтяному и природному газу, газоконденсату). Отлично подойдет как готовые ответы к экзаменационным вопросам. Прилагается альбом с графическими иллюстрациями.
Литература
1. Рабинович Н.Р. Инженерные задачи механики сплошной среды в бурении. –М.: Недра, 1989. – 270 с.
2. Рабира. Х. Технология бурения нефтяных скважин. /Под. ред. В.Г. Григулецкого. - М.: Недра, 1989. - 413 с.
3. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика. Учебник для вузов. – М.-Ижевск: - Институт компьютерных исследований, 2005. – 544 с.
Дополнительная литература
1. Справочник по гидравлике /Под. ред. В.А. Большакова. – Киев, Вища школа,
1977. – 280 с.
2. Кутателадзе С.С, основы теории теплообмена. – Новосибирск: Наука, 1970. – 658 с.
3. Геологические основы разработки нефтяных месторождений. – М.: Недра, 1975. – 534 с.7. Гиматудинов Ш.К. Физика нефтяного и газового пласта. – М.: Недра, 1971. – 309 с.
4. Амикс Д., Басе Д., Уайтинг Р, Физика нефтяного пласта. – М.: Гостоптехизтат, 1962. – 572 с.
5. Данилов В.Л., Кац Р. М. Гидродинамические расчеты взаимного вытеснения жидкостей в пористой среде. – М.: Недра, 1980. – 264 с.
6. Сидоров Н.А. Бурение и эксплуатация нефтяных и газовых скважин. учебник для техникумов. – М.: Недра, 1982, - 376 с.
Купить эту работу vs Заказать новую | ||
---|---|---|
1 раз | Куплено | Выполняется индивидуально |
Не менее 40%
Исполнитель, загружая работу в «Банк готовых работ» подтверждает, что
уровень оригинальности
работы составляет не менее 40%
|
Уникальность | Выполняется индивидуально |
Сразу в личном кабинете | Доступность | Срок 1—4 дня |
100 ₽ | Цена | от 100 ₽ |
Не подошла эта работа?
В нашей базе 7277 Работ — поможем найти подходящую