Автор24

Информация о работе

Подробнее о работе

Страница работы

Тепловой и гидравлический расчет теплообменных аппаратов

  • 25 страниц
  • 2015 год
  • 108 просмотров
  • 0 покупок
Автор работы

EkaterinaKonstantinovna

Большой опыт в написании работ, очень давно работаю на этом ресурсе, выполнила более 15000 заказов

660 ₽

Работа будет доступна в твоём личном кабинете после покупки

Гарантия сервиса Автор24

Уникальность не ниже 50%

Фрагменты работ

В процессах нефте- и газопереработки для обеспечения необходимой температуры в аппаратах требуется подводить и отводить тепло. Для этого на технологических установках широко используются специальные аппараты, называемые теплообменными или теплообменниками.
В аппаратах, предназначенных для нагрева или охлаждения, происходит теплообмен между двумя потоками, при этом один из них нагревается, а другой охлаждается. Поэтому вне зависимости от того, что является целевым назначением аппарата: нагрев или охлаждение, их называют теплообменными аппаратами.
Применительно к нефтегазоперерабатывающей промышленности теплообменные аппараты классифицируются по способу передачи тепла и назначению.
В зависимости от способа передачи тепла аппараты делятся на следующие группы.
Поверхностные теплообменные аппараты, в которых передача тепла между теплообменивающимися средами осуществляется через поверхность, разделяющую эти среды.
Аппараты смешения, в которых передача тепла между теплообменивающимися средами происходит при их непосредственном контакте.
В зависимости от назначения аппараты делятся на следующие группы.
Теплообменники - в них один поток нагревается за счет использования тепла другого, получаемого в технологическом процессе и подлежащего в дальнейшем охлаждению.
Нагреватели, испарители, кипятильники - в них нагрев или частичное испарение осуществляется за счет использования высокотемпературных потоков нефтепродуктов или специальных теплоносителей (водяной пар, масло и др.).
Холодильники и конденсаторы - они предназначены для охлаждения потока или конденсации паров с использованием специального охлаждающего агента (вода, воздух, испаряющийся аммиак, пропан и др.).
Кристаллизаторы предназначены для охлаждения соответствующих жидких потоков до температур, обеспечивающих образование кристаллов некоторых составляющих смесь веществ. В качестве охлаждающего агента используются вода или специальные хладагенты в виде охлажденных рассолов, испаряющихся аммиака, пропана и др.
В зависимости от характера направления потоков теплообменные аппараты делятся на прямоточные, противоточные, смешанного и перекрестного тока.
Теплообменные аппараты типа «труба в трубе» по конструкции делятся на однопоточные (неразборные и разборные) и многопоточные.
Во многих случаях аппараты типа «труба в трубе» работают с более высокими тепловыми показателями, чем кожухотрубчатые теплообменники.
В теплобменных аппаратах разборной конструкции внутренние трубы в ряде случаев с наружной поверхности выполняются с оребрением, позволяющим в 4-5 раз увеличить их поверхность теплообмена. Оребрение внутренних труб используют, как правило, в тех случаях, когда со стороны одной из теплообменивающихся сред трудно обеспечить высокий коэффициент теплоотдачи (движется газ, вязкая жидкость, поток имеет ламинарный характер и т.п.).
Для повышения эффективности теплообмена в трубном пространстве используют методы воздействия на поток устройствами, разрушающими и турбулизирующими движение потока в трубе.
Недостатками теплообменных аппаратов типа «труба в трубе» по сравнению с кожухотрубчатыми аппаратами являются большие габариты, а также более высокий расход металла на единицу поверхности нагрева.
Теплообменные аппараты типа «труба в трубе» жесткой конструкции, так же как и кожухотрубчатые с неподвижными решетками, используются при сравнительно небольшой разности температур теплообменивающихся сред и при теплообмене незагрязненных жидкостей.
В теплообменных аппаратах типа «труба в трубе» разборной конструкции сравнительно легко очищаются внутренняя и наружная поверхности труб; эти аппараты обладают высоким коэффициентом теплопередачи и являются надежными в эксплуатации.
Кристаллизатор типа «труба в трубе» предназначен для получения и роста кристаллов, поэтому в аппарате должен быть обеспечен оптимальный тепловой и гидродинамический режим. В кристаллизаторах по внутренней трубе движется охлаждаемый раствор масла, а по кольцевому пространству - охлаждающая среда. Во избежание отложения парафина на внутренней поверхности трубы кристаллизаторы снабжены вращающимся валом со скребками, удаляющими парафин. Это необходимо, чтобы повысить эффект теплообмена.
В последнее время все более широкое применение находят поверхностные теплообменники из листового материала, главным образом спиральные и пластинчатые.
В инженерной практике при выборе теплообменного аппарата необходимо провести конструктивный и проверочный тепловые расчеты, а также гидравлический расчет теплообменных аппаратов.
Конструктивный тепловой расчет проводится для того, чтобы выбрать теплообменный аппарат при их серийном производстве на заводах или спроектировать новый аппарат. В результате конструктивного расчета выбирается тип аппарата, его конструкция, схема течения теплоносителей, материал для изготовления отдельных элементов и определяется размер и масса теплообменного аппарата.
Проверочный тепловой расчет проводится с целью определить мощность теплообменного аппарата и конечные температуры теплоносителей, омывающих поверхность нагрева теплообменного аппарата, конструкция и площадь поверхности нагрева которого известны.
Проверочный расчет обычно выполняется тогда, когда необходимо выяснить возможность использования уже установленного или проектируемого теплообменного аппарата в условиях, отличных от расчетных.
Гидравлический расчет теплообменного аппарата необходим для определения перепадов давлений теплоносителей и мощностей насосов и компрессоров, перекачивающих теплоносители. Скорости течения теплоносителей при этом выбираются такими, чтобы перепады давлений не превышали допустимых значений, указанных в проектном задании.

Техническое задание 4
1. Введение. Классификация теплообменных аппаратов. 5
2. Конструктивный тепловой расчет 9
2.1. Определение неизвестной температуры 9
2.2. Определение теплофизических свойств горячего и холодного теплоносителей 9
2.3. Определение мощности теплообменного аппарата Q по исходным данным 10
2.4. Определение средней разности температур между теплоносителями 10
2.5. Определение оптимального диапазона площадей проходных сечений трубного пространства ТА: 10
2.6. Определение минимального индекса противоточности Рmin ТА 11
2.7. Определение водяного эквивалента 11
2.8. Предварительный выбор теплообменного аппарата по каталогу. 12
2.9. Расчет коэффициентов теплоотдачи от горячего теплоносителя к стенке α1 и от стенки к холодному теплоносителю α2 , термических сопротивлений стенки трубы и загрязнений . 12
2.10. Окончательный выбор теплообменника 16
3. Проверочный тепловой расчет теплообменного аппарата 17
3.1. Определение фактической тепловой мощности выбранного аппарата: 17
3.2. Определение действительные температуры теплоносителей на выходе теплообменного аппарата: 18
4. Гидравлический расчет теплообменного аппарата 19
5. Графическая часть 23
5.1. Температурная диаграмма теплоносителей 23
5.2. Схема теплообменного аппарата 24
Список используемой литературы 25

Схема движения теплоносителей и положение перегородок в
распределительной камере и задней крышке теплообменного аппарата:

1.Калинин А.Ф, «Расчет и выбор конструкции кожухотрубного теплообменного аппарата» Москва, «РГУ нефти и газа им. И.М. Губкина» 2002;
2. Поршаков Б.П., «Термодинамика и теплопередача» Москва, «Недра» 1987;
3. Трошин А.К., «Термодинамические и теплофизические свойства рабочих тел теплоэнергетических установок» Москва, «МПА - Пресс» 2006;

Форма заказа новой работы

Не подошла эта работа?

Закажи новую работу, сделанную по твоим требованиям

Согласен с условиями политики конфиденциальности и  пользовательского соглашения

Фрагменты работ

В процессах нефте- и газопереработки для обеспечения необходимой температуры в аппаратах требуется подводить и отводить тепло. Для этого на технологических установках широко используются специальные аппараты, называемые теплообменными или теплообменниками.
В аппаратах, предназначенных для нагрева или охлаждения, происходит теплообмен между двумя потоками, при этом один из них нагревается, а другой охлаждается. Поэтому вне зависимости от того, что является целевым назначением аппарата: нагрев или охлаждение, их называют теплообменными аппаратами.
Применительно к нефтегазоперерабатывающей промышленности теплообменные аппараты классифицируются по способу передачи тепла и назначению.
В зависимости от способа передачи тепла аппараты делятся на следующие группы.
Поверхностные теплообменные аппараты, в которых передача тепла между теплообменивающимися средами осуществляется через поверхность, разделяющую эти среды.
Аппараты смешения, в которых передача тепла между теплообменивающимися средами происходит при их непосредственном контакте.
В зависимости от назначения аппараты делятся на следующие группы.
Теплообменники - в них один поток нагревается за счет использования тепла другого, получаемого в технологическом процессе и подлежащего в дальнейшем охлаждению.
Нагреватели, испарители, кипятильники - в них нагрев или частичное испарение осуществляется за счет использования высокотемпературных потоков нефтепродуктов или специальных теплоносителей (водяной пар, масло и др.).
Холодильники и конденсаторы - они предназначены для охлаждения потока или конденсации паров с использованием специального охлаждающего агента (вода, воздух, испаряющийся аммиак, пропан и др.).
Кристаллизаторы предназначены для охлаждения соответствующих жидких потоков до температур, обеспечивающих образование кристаллов некоторых составляющих смесь веществ. В качестве охлаждающего агента используются вода или специальные хладагенты в виде охлажденных рассолов, испаряющихся аммиака, пропана и др.
В зависимости от характера направления потоков теплообменные аппараты делятся на прямоточные, противоточные, смешанного и перекрестного тока.
Теплообменные аппараты типа «труба в трубе» по конструкции делятся на однопоточные (неразборные и разборные) и многопоточные.
Во многих случаях аппараты типа «труба в трубе» работают с более высокими тепловыми показателями, чем кожухотрубчатые теплообменники.
В теплобменных аппаратах разборной конструкции внутренние трубы в ряде случаев с наружной поверхности выполняются с оребрением, позволяющим в 4-5 раз увеличить их поверхность теплообмена. Оребрение внутренних труб используют, как правило, в тех случаях, когда со стороны одной из теплообменивающихся сред трудно обеспечить высокий коэффициент теплоотдачи (движется газ, вязкая жидкость, поток имеет ламинарный характер и т.п.).
Для повышения эффективности теплообмена в трубном пространстве используют методы воздействия на поток устройствами, разрушающими и турбулизирующими движение потока в трубе.
Недостатками теплообменных аппаратов типа «труба в трубе» по сравнению с кожухотрубчатыми аппаратами являются большие габариты, а также более высокий расход металла на единицу поверхности нагрева.
Теплообменные аппараты типа «труба в трубе» жесткой конструкции, так же как и кожухотрубчатые с неподвижными решетками, используются при сравнительно небольшой разности температур теплообменивающихся сред и при теплообмене незагрязненных жидкостей.
В теплообменных аппаратах типа «труба в трубе» разборной конструкции сравнительно легко очищаются внутренняя и наружная поверхности труб; эти аппараты обладают высоким коэффициентом теплопередачи и являются надежными в эксплуатации.
Кристаллизатор типа «труба в трубе» предназначен для получения и роста кристаллов, поэтому в аппарате должен быть обеспечен оптимальный тепловой и гидродинамический режим. В кристаллизаторах по внутренней трубе движется охлаждаемый раствор масла, а по кольцевому пространству - охлаждающая среда. Во избежание отложения парафина на внутренней поверхности трубы кристаллизаторы снабжены вращающимся валом со скребками, удаляющими парафин. Это необходимо, чтобы повысить эффект теплообмена.
В последнее время все более широкое применение находят поверхностные теплообменники из листового материала, главным образом спиральные и пластинчатые.
В инженерной практике при выборе теплообменного аппарата необходимо провести конструктивный и проверочный тепловые расчеты, а также гидравлический расчет теплообменных аппаратов.
Конструктивный тепловой расчет проводится для того, чтобы выбрать теплообменный аппарат при их серийном производстве на заводах или спроектировать новый аппарат. В результате конструктивного расчета выбирается тип аппарата, его конструкция, схема течения теплоносителей, материал для изготовления отдельных элементов и определяется размер и масса теплообменного аппарата.
Проверочный тепловой расчет проводится с целью определить мощность теплообменного аппарата и конечные температуры теплоносителей, омывающих поверхность нагрева теплообменного аппарата, конструкция и площадь поверхности нагрева которого известны.
Проверочный расчет обычно выполняется тогда, когда необходимо выяснить возможность использования уже установленного или проектируемого теплообменного аппарата в условиях, отличных от расчетных.
Гидравлический расчет теплообменного аппарата необходим для определения перепадов давлений теплоносителей и мощностей насосов и компрессоров, перекачивающих теплоносители. Скорости течения теплоносителей при этом выбираются такими, чтобы перепады давлений не превышали допустимых значений, указанных в проектном задании.

Техническое задание 4
1. Введение. Классификация теплообменных аппаратов. 5
2. Конструктивный тепловой расчет 9
2.1. Определение неизвестной температуры 9
2.2. Определение теплофизических свойств горячего и холодного теплоносителей 9
2.3. Определение мощности теплообменного аппарата Q по исходным данным 10
2.4. Определение средней разности температур между теплоносителями 10
2.5. Определение оптимального диапазона площадей проходных сечений трубного пространства ТА: 10
2.6. Определение минимального индекса противоточности Рmin ТА 11
2.7. Определение водяного эквивалента 11
2.8. Предварительный выбор теплообменного аппарата по каталогу. 12
2.9. Расчет коэффициентов теплоотдачи от горячего теплоносителя к стенке α1 и от стенки к холодному теплоносителю α2 , термических сопротивлений стенки трубы и загрязнений . 12
2.10. Окончательный выбор теплообменника 16
3. Проверочный тепловой расчет теплообменного аппарата 17
3.1. Определение фактической тепловой мощности выбранного аппарата: 17
3.2. Определение действительные температуры теплоносителей на выходе теплообменного аппарата: 18
4. Гидравлический расчет теплообменного аппарата 19
5. Графическая часть 23
5.1. Температурная диаграмма теплоносителей 23
5.2. Схема теплообменного аппарата 24
Список используемой литературы 25

Схема движения теплоносителей и положение перегородок в
распределительной камере и задней крышке теплообменного аппарата:

1.Калинин А.Ф, «Расчет и выбор конструкции кожухотрубного теплообменного аппарата» Москва, «РГУ нефти и газа им. И.М. Губкина» 2002;
2. Поршаков Б.П., «Термодинамика и теплопередача» Москва, «Недра» 1987;
3. Трошин А.К., «Термодинамические и теплофизические свойства рабочих тел теплоэнергетических установок» Москва, «МПА - Пресс» 2006;

Купить эту работу

Тепловой и гидравлический расчет теплообменных аппаратов

660 ₽

или заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 500 ₽

Гарантии Автор24

Изображения работ

Страница работы
Страница работы
Страница работы

Понравилась эта работа?

или

31 мая 2017 заказчик разместил работу

Выбранный эксперт:

Автор работы
EkaterinaKonstantinovna
4.6
Большой опыт в написании работ, очень давно работаю на этом ресурсе, выполнила более 15000 заказов
Купить эту работу vs Заказать новую
0 раз Куплено Выполняется индивидуально
Не менее 40%
Исполнитель, загружая работу в «Банк готовых работ» подтверждает, что уровень оригинальности работы составляет не менее 40%
Уникальность Выполняется индивидуально
Сразу в личном кабинете Доступность Срок 1—6 дней
660 ₽ Цена от 500 ₽

5 Похожих работ

Отзывы студентов

Отзыв Георгий Букин об авторе EkaterinaKonstantinovna 2016-04-19
Курсовая работа

Хороший автор. Спасибо. Рекомендую

Общая оценка 5
Отзыв Галия об авторе EkaterinaKonstantinovna 2015-05-06
Курсовая работа

Спасибо!!! Работа выполнена в срок, без замечаний. Рекомендую автора!

Общая оценка 5
Отзыв Наталья Крафт об авторе EkaterinaKonstantinovna 2015-03-20
Курсовая работа

Автор ответственный и грамотный, претензий не имею

Общая оценка 5
Отзыв ktyjxrf об авторе EkaterinaKonstantinovna 2015-04-24
Курсовая работа

Работа выполнена на отлично,раньше срока! Приятно работать с компетентными людьми!

Общая оценка 5

другие учебные работы по предмету

Готовая работа

расчет коксовой вагранки закрытого типа для плавки серогуна марки сч18 производительностью 15т/час

Уникальность: от 40%
Доступность: сразу
660 ₽
Готовая работа

Источники и системы теплоснабжения промпредприятий (УрФУ)

Уникальность: от 40%
Доступность: сразу
1500 ₽
Готовая работа

курсовая Снижение вредных выбросов котельной

Уникальность: от 40%
Доступность: сразу
700 ₽
Готовая работа

ОПРЕДЕЛЕНИЕ ПОКАЗАТЕЛЕЙ РАБОЧЕГО ПРОЦЕССА И ОСНОВНЫХ РАЗМЕРОВ ТЕПЛООБМЕННОГО АППАРАТА.(2 Вариант)

Уникальность: от 40%
Доступность: сразу
500 ₽
Готовая работа

Теплотехнический расчет вращающейся печи для обжига бокситов

Уникальность: от 40%
Доступность: сразу
490 ₽
Готовая работа

Расчёт парогенератора К–35–40

Уникальность: от 40%
Доступность: сразу
800 ₽
Готовая работа

Кожухотрубчатые теплообменные аппараты.

Уникальность: от 40%
Доступность: сразу
490 ₽
Готовая работа

Непрерывная ректификация Классификация ультразвуковых реакций

Уникальность: от 40%
Доступность: сразу
490 ₽
Готовая работа

Поверочный расчет котла ДКВР 6,5-13 методом последовательных приближений и конструктивный расчет водяного экономайзера котла.

Уникальность: от 40%
Доступность: сразу
660 ₽
Готовая работа

Расчет кожухотрубного теплообменника. Вода-толуол

Уникальность: от 40%
Доступность: сразу
950 ₽
Готовая работа

Расчет тепловой схемы конденсационного энергоблока

Уникальность: от 40%
Доступность: сразу
490 ₽
Готовая работа

Проект охладителя горячего конденсата водяного пара ОВ-140М

Уникальность: от 40%
Доступность: сразу
200 ₽