Автор24

Информация о работе

Подробнее о работе

Страница работы
  • 11 страниц
  • 2014 год
  • 1045 просмотров
  • 1 покупка
Автор работы

zmejuka

Выполняю работы на заказ более 12 лет

250 ₽

Работа будет доступна в твоём личном кабинете после покупки

Гарантия сервиса Автор24

Уникальность не ниже 50%

Фрагменты работ

Задача №1
Из партии, содержащей 12 изделий, среди которых 3 бракованных, наудачу извлекают 5 изделий для контроля. Найти вероятности следующих событий:
А={в полученной выборке ровно 2 бракованных изделия};
B={в полученной выборке нет бракованных изделий}.
Задача №2
Иванов и Петров договорились о встрече в определенном месте между 11 и 12 часами. Каждый приходит в случайный момент указанного промежутка и ждет товарища не более 20 минут, после чего уходит. Наблюдаемый результат – пара чисел (x,y), где x – время появления Петрова, y – время появления Иванова (время исчислять в минутах). Построить множество элементарных событий Ω и подмножество, соответствующее событию В. Найти вероятность этого события.
Событие B={Петров ждал Иванова все обусловленное время и не дождался}.
Задача №3
Электрическая цепь прибора составлена по схеме, приведенной на рисунке. Событие Ak={k-ый элемент вышел из строя}. k=1,2,…,6. Отказы элементов являются независимыми в совокупности событиями. Известна надежность p_k=P(A ̅_k) k-го элемента (соответственно q_k=1-p_k- вероятность отказа). Событие B={разрыв цепи}. Выразить событие B в алгебре событий Ak. Найти вероятность отказа прибора и вероятность надежности схемы. p1=p2=0,9, p3=p4=0,8, p5=p6=0,85.
Задача№ 4
В тире имеется три вида винтовок: n1-первого типа, n2-второго типа, n3-третьего типа. Вероятность попадания в цель из винтовок первого типа р1, второго типа р2, третьего типа р3. После выстрела из винтовки, выбранной наудачу, цель была поражена. Какова вероятность того, что выстрел был сделан из винтовки третьего типа?
3. n1 =3, n2=4, n3 =3, р1 =0,9, р2=0,85, р3 =0,65.
4. n1 =1, n2=3, n3 =5, р1 =0,65, р2=0,7, р3 =0,75.
Задача №5
В семье 6 детей. Считая вероятность рождения мальчика и девочки по 0,5, определить вероятность того, что в данной семье мальчиков не менее 3, но не более 5.
Задача №6
Составить закон распределения случайной величины Х. Записать функцию распределения, построить её график. Вычислить числовые характеристики М(Х), D(Х), s(Х).
Х-число отказавших элементов в одном опыте с устройством, состоящим из 4 независимо работающих элементов. Вероятность отказа каждого элемента 0,2.
Задача№7
Автомат штампует детали. Контролируется длина детали Х, которая распределена нормально. Проектная длина детали равна 50 мм. Фактическая длина изготовленных деталей не менее 32 мм и не более 68 мм. Найти вероятность того, что длина наудачу взятой детали меньше 40 мм.
Задача № 8
Из изучаемой налоговыми органами обширной группы населения случайным образом отобраны 10 человек и собраны сведения об их доходах за истекший год в тысячах рублей: х1, х2,…, х10. Найти выборочное среднее, исправленную выборочную дисперсию. Считая распределение доходов в группе нормальным и принимая в качестве его параметров выборочные характеристики, определить, какой процент населения имеет годовой доход, превышающий 70 тыс. рублей.
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
65 55 45 65 85 55 45 65 100 80

Задача №1
Из партии, содержащей 12 изделий, среди которых 3 бракованных, наудачу извлекают 5 изделий для контроля. Найти вероятности следующих событий:
А={в полученной выборке ровно 2 бракованных изделия};
B={в полученной выборке нет бракованных изделий}.
Задача №2
Иванов и Петров договорились о встрече в определенном месте между 11 и 12 часами. Каждый приходит в случайный момент указанного промежутка и ждет товарища не более 20 минут, после чего уходит. Наблюдаемый результат – пара чисел (x,y), где x – время появления Петрова, y – время появления Иванова (время исчислять в минутах). Построить множество элементарных событий Ω и подмножество, соответствующее событию В. Найти вероятность этого события.
Событие B={Петров ждал Иванова все обусловленное время и не дождался}.
Задача №3
Электрическая цепь прибора составлена по схеме, приведенной на рисунке. Событие Ak={k-ый элемент вышел из строя}. k=1,2,…,6. Отказы элементов являются независимыми в совокупности событиями. Известна надежность p_k=P(A ̅_k) k-го элемента (соответственно q_k=1-p_k- вероятность отказа). Событие B={разрыв цепи}. Выразить событие B в алгебре событий Ak. Найти вероятность отказа прибора и вероятность надежности схемы. p1=p2=0,9, p3=p4=0,8, p5=p6=0,85.
Задача№ 4
В тире имеется три вида винтовок: n1-первого типа, n2-второго типа, n3-третьего типа. Вероятность попадания в цель из винтовок первого типа р1, второго типа р2, третьего типа р3. После выстрела из винтовки, выбранной наудачу, цель была поражена. Какова вероятность того, что выстрел был сделан из винтовки третьего типа?
3. n1 =3, n2=4, n3 =3, р1 =0,9, р2=0,85, р3 =0,65.
4. n1 =1, n2=3, n3 =5, р1 =0,65, р2=0,7, р3 =0,75.
Задача №5
В семье 6 детей. Считая вероятность рождения мальчика и девочки по 0,5, определить вероятность того, что в данной семье мальчиков не менее 3, но не более 5.
Задача №6
Составить закон распределения случайной величины Х. Записать функцию распределения, построить её график. Вычислить числовые характеристики М(Х), D(Х), s(Х).
Х-число отказавших элементов в одном опыте с устройством, состоящим из 4 независимо работающих элементов. Вероятность отказа каждого элемента 0,2.
Задача№7
Автомат штампует детали. Контролируется длина детали Х, которая распределена нормально. Проектная длина детали равна 50 мм. Фактическая длина изготовленных деталей не менее 32 мм и не более 68 мм. Найти вероятность того, что длина наудачу взятой детали меньше 40 мм.
Задача № 8
Из изучаемой налоговыми органами обширной группы населения случайным образом отобраны 10 человек и собраны сведения об их доходах за истекший год в тысячах рублей: х1, х2,…, х10. Найти выборочное среднее, исправленную выборочную дисперсию. Считая распределение доходов в группе нормальным и принимая в качестве его параметров выборочные характеристики, определить, какой процент населения имеет годовой доход, превышающий 70 тыс. рублей.
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
65 55 45 65 85 55 45 65 100 80

8 задач с пояснениями

Список литературы:


1. Вентцель Е. С. Задачи и упражнения по теории вероятностей: Учеб. пособие для студ. втузов / Е. С. Вентцель, Л. А. Овчаров. — 5-е изд., испр. — М.: Издательский центр «Академия», 2003. — 448 с.
2. Гмурман В. Е. Теория вероятностей и математическая статистика - М., Высш. шк., 2003.- 479 с.
3. Гмурман В. Е. Руководство к решению задач по теории вероятностей и математической статистике. - М., Высш. шк., 2004.- 404 с.
4. Гнеденко Б.В. Курс теории вероятностей: Учебник. - Изд. 8-е, испр. и доп. — М.: Едиториал УРСС, 2005. — 448 с. (Классический университетский учебник.).
5. Максимов Ю.Д. Теория вероятностей, контрольные задания с образцами решений. -Издательство СПбГПУ, 2002. - 96 с.
6. Пугачев B.C. Теория вероятностей и математическая статистика: Учеб. пособие.— 2-е изд., исправл. и дополи.— М.: Физматлит,2002.- 496 с.

Форма заказа новой работы

Не подошла эта работа?

Закажи новую работу, сделанную по твоим требованиям

Оставляя свои контактные данные и нажимая «Заказать Решение задач», я соглашаюсь пройти процедуру регистрации на Платформе, принимаю условия Пользовательского соглашения и Политики конфиденциальности в целях заключения соглашения.

Фрагменты работ

Задача №1
Из партии, содержащей 12 изделий, среди которых 3 бракованных, наудачу извлекают 5 изделий для контроля. Найти вероятности следующих событий:
А={в полученной выборке ровно 2 бракованных изделия};
B={в полученной выборке нет бракованных изделий}.
Задача №2
Иванов и Петров договорились о встрече в определенном месте между 11 и 12 часами. Каждый приходит в случайный момент указанного промежутка и ждет товарища не более 20 минут, после чего уходит. Наблюдаемый результат – пара чисел (x,y), где x – время появления Петрова, y – время появления Иванова (время исчислять в минутах). Построить множество элементарных событий Ω и подмножество, соответствующее событию В. Найти вероятность этого события.
Событие B={Петров ждал Иванова все обусловленное время и не дождался}.
Задача №3
Электрическая цепь прибора составлена по схеме, приведенной на рисунке. Событие Ak={k-ый элемент вышел из строя}. k=1,2,…,6. Отказы элементов являются независимыми в совокупности событиями. Известна надежность p_k=P(A ̅_k) k-го элемента (соответственно q_k=1-p_k- вероятность отказа). Событие B={разрыв цепи}. Выразить событие B в алгебре событий Ak. Найти вероятность отказа прибора и вероятность надежности схемы. p1=p2=0,9, p3=p4=0,8, p5=p6=0,85.
Задача№ 4
В тире имеется три вида винтовок: n1-первого типа, n2-второго типа, n3-третьего типа. Вероятность попадания в цель из винтовок первого типа р1, второго типа р2, третьего типа р3. После выстрела из винтовки, выбранной наудачу, цель была поражена. Какова вероятность того, что выстрел был сделан из винтовки третьего типа?
3. n1 =3, n2=4, n3 =3, р1 =0,9, р2=0,85, р3 =0,65.
4. n1 =1, n2=3, n3 =5, р1 =0,65, р2=0,7, р3 =0,75.
Задача №5
В семье 6 детей. Считая вероятность рождения мальчика и девочки по 0,5, определить вероятность того, что в данной семье мальчиков не менее 3, но не более 5.
Задача №6
Составить закон распределения случайной величины Х. Записать функцию распределения, построить её график. Вычислить числовые характеристики М(Х), D(Х), s(Х).
Х-число отказавших элементов в одном опыте с устройством, состоящим из 4 независимо работающих элементов. Вероятность отказа каждого элемента 0,2.
Задача№7
Автомат штампует детали. Контролируется длина детали Х, которая распределена нормально. Проектная длина детали равна 50 мм. Фактическая длина изготовленных деталей не менее 32 мм и не более 68 мм. Найти вероятность того, что длина наудачу взятой детали меньше 40 мм.
Задача № 8
Из изучаемой налоговыми органами обширной группы населения случайным образом отобраны 10 человек и собраны сведения об их доходах за истекший год в тысячах рублей: х1, х2,…, х10. Найти выборочное среднее, исправленную выборочную дисперсию. Считая распределение доходов в группе нормальным и принимая в качестве его параметров выборочные характеристики, определить, какой процент населения имеет годовой доход, превышающий 70 тыс. рублей.
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
65 55 45 65 85 55 45 65 100 80

Задача №1
Из партии, содержащей 12 изделий, среди которых 3 бракованных, наудачу извлекают 5 изделий для контроля. Найти вероятности следующих событий:
А={в полученной выборке ровно 2 бракованных изделия};
B={в полученной выборке нет бракованных изделий}.
Задача №2
Иванов и Петров договорились о встрече в определенном месте между 11 и 12 часами. Каждый приходит в случайный момент указанного промежутка и ждет товарища не более 20 минут, после чего уходит. Наблюдаемый результат – пара чисел (x,y), где x – время появления Петрова, y – время появления Иванова (время исчислять в минутах). Построить множество элементарных событий Ω и подмножество, соответствующее событию В. Найти вероятность этого события.
Событие B={Петров ждал Иванова все обусловленное время и не дождался}.
Задача №3
Электрическая цепь прибора составлена по схеме, приведенной на рисунке. Событие Ak={k-ый элемент вышел из строя}. k=1,2,…,6. Отказы элементов являются независимыми в совокупности событиями. Известна надежность p_k=P(A ̅_k) k-го элемента (соответственно q_k=1-p_k- вероятность отказа). Событие B={разрыв цепи}. Выразить событие B в алгебре событий Ak. Найти вероятность отказа прибора и вероятность надежности схемы. p1=p2=0,9, p3=p4=0,8, p5=p6=0,85.
Задача№ 4
В тире имеется три вида винтовок: n1-первого типа, n2-второго типа, n3-третьего типа. Вероятность попадания в цель из винтовок первого типа р1, второго типа р2, третьего типа р3. После выстрела из винтовки, выбранной наудачу, цель была поражена. Какова вероятность того, что выстрел был сделан из винтовки третьего типа?
3. n1 =3, n2=4, n3 =3, р1 =0,9, р2=0,85, р3 =0,65.
4. n1 =1, n2=3, n3 =5, р1 =0,65, р2=0,7, р3 =0,75.
Задача №5
В семье 6 детей. Считая вероятность рождения мальчика и девочки по 0,5, определить вероятность того, что в данной семье мальчиков не менее 3, но не более 5.
Задача №6
Составить закон распределения случайной величины Х. Записать функцию распределения, построить её график. Вычислить числовые характеристики М(Х), D(Х), s(Х).
Х-число отказавших элементов в одном опыте с устройством, состоящим из 4 независимо работающих элементов. Вероятность отказа каждого элемента 0,2.
Задача№7
Автомат штампует детали. Контролируется длина детали Х, которая распределена нормально. Проектная длина детали равна 50 мм. Фактическая длина изготовленных деталей не менее 32 мм и не более 68 мм. Найти вероятность того, что длина наудачу взятой детали меньше 40 мм.
Задача № 8
Из изучаемой налоговыми органами обширной группы населения случайным образом отобраны 10 человек и собраны сведения об их доходах за истекший год в тысячах рублей: х1, х2,…, х10. Найти выборочное среднее, исправленную выборочную дисперсию. Считая распределение доходов в группе нормальным и принимая в качестве его параметров выборочные характеристики, определить, какой процент населения имеет годовой доход, превышающий 70 тыс. рублей.
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
65 55 45 65 85 55 45 65 100 80

8 задач с пояснениями

Список литературы:


1. Вентцель Е. С. Задачи и упражнения по теории вероятностей: Учеб. пособие для студ. втузов / Е. С. Вентцель, Л. А. Овчаров. — 5-е изд., испр. — М.: Издательский центр «Академия», 2003. — 448 с.
2. Гмурман В. Е. Теория вероятностей и математическая статистика - М., Высш. шк., 2003.- 479 с.
3. Гмурман В. Е. Руководство к решению задач по теории вероятностей и математической статистике. - М., Высш. шк., 2004.- 404 с.
4. Гнеденко Б.В. Курс теории вероятностей: Учебник. - Изд. 8-е, испр. и доп. — М.: Едиториал УРСС, 2005. — 448 с. (Классический университетский учебник.).
5. Максимов Ю.Д. Теория вероятностей, контрольные задания с образцами решений. -Издательство СПбГПУ, 2002. - 96 с.
6. Пугачев B.C. Теория вероятностей и математическая статистика: Учеб. пособие.— 2-е изд., исправл. и дополи.— М.: Физматлит,2002.- 496 с.

Купить эту работу

ТВ и МС

250 ₽

или заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 20 ₽

Гарантии Автор24

Изображения работ

Страница работы
Страница работы
Страница работы

Понравилась эта работа?

или

23 апреля 2014 заказчик разместил работу

Выбранный эксперт:

Автор работы
zmejuka
5
Выполняю работы на заказ более 12 лет
Купить эту работу vs Заказать новую
1 раз Куплено Выполняется индивидуально
Не менее 40%
Исполнитель, загружая работу в «Банк готовых работ» подтверждает, что уровень оригинальности работы составляет не менее 40%
Уникальность Выполняется индивидуально
Сразу в личном кабинете Доступность Срок 1—4 дня
250 ₽ Цена от 20 ₽

5 Похожих работ

Отзывы студентов

Отзыв Елена об авторе zmejuka 2016-12-06
Решение задач

все хорошо

Общая оценка 5
Отзыв Эльза Ахкамиева об авторе zmejuka 2014-06-05
Решение задач

СПАСИБО БОЛЬШОЕ ЗА КАЧЕСТВЕННОЕ И СРОЧНОЕ ВЫПОЛНЕНИЕ РАБОТЫ!

Общая оценка 5
Отзыв anastasiyavin об авторе zmejuka 2014-11-19
Решение задач

Спасибо за работу! Быстро и качественно!

Общая оценка 5
Отзыв Ксения Панова об авторе zmejuka 2014-09-11
Решение задач

Благодарю за быстрое выполнение задач по теории вероятности и математической статистике! Надеюсь на дальнейшее плодотворное сотрудничество! спасибо Вам))

Общая оценка 5

другие учебные работы по предмету

Готовая работа

Общая характеристика деятельности В.В. Бианки в области теории и практики детской литературы

Уникальность: от 40%
Доступность: сразу
200 ₽
Готовая работа

Задачи по теории вероятностей и мат.статистике

Уникальность: от 40%
Доступность: сразу
500 ₽
Готовая работа

Математическая обработка гидрографических измерений

Уникальность: от 40%
Доступность: сразу
1000 ₽
Готовая работа

"Измерение двумерной системы.Оценка параметров распределения некоррелированных величин."

Уникальность: от 40%
Доступность: сразу
400 ₽
Готовая работа

КУРСОВАЯ РАБОТА по учебной дисциплине " Теория вероятностей и математическая статистика "

Уникальность: от 40%
Доступность: сразу
750 ₽
Готовая работа

Выбор наиболее эффективных методов

Уникальность: от 40%
Доступность: сразу
400 ₽
Готовая работа

В результате измерений некоторой физической величины Х получена выборка. По выборке определить закон распределения случайной величины Х.

Уникальность: от 40%
Доступность: сразу
450 ₽
Готовая работа

"Случайные" (псевдослучайные) числа

Уникальность: от 40%
Доступность: сразу
300 ₽
Готовая работа

КУРСОВАЯ РАБОТА по учебной дисциплине " Теория вероятностей и математическая статистика "

Уникальность: от 40%
Доступность: сразу
750 ₽
Готовая работа

Теория вероятностей и математическая статистика Вариант № 2

Уникальность: от 40%
Доступность: сразу
750 ₽
Готовая работа

Комплект заданий для контрольной работы по дисциплине «Математика» Вариант 20

Уникальность: от 40%
Доступность: сразу
150 ₽
Готовая работа

Модели управления запасами

Уникальность: от 40%
Доступность: сразу
660 ₽