Автор просто спас меня! Нужно было в сжатые сроки сделать работу! Он всё сделал. По срокам не задержал. Требовались небольшие доработки, но он всё доработал и помог мне очень сильно! Спасибо!
Подробнее о работе
Гарантия сервиса Автор24
Уникальность не ниже 50%
ВСТУП
1 ОГЛЯД ЛІТЕРАТУРИ
1.1 Структура, функціональні особливості, активність ферменту тирозинази Agaricus bisporus
1.2 Інгібітори тирозинази
1.2.1 Механізм утворення меланіну та способи попередження меланогенезу
1.2.2 Основні групи інгібіторів тирозинази
2 МАТЕРІАЛИ І МЕТОДИ ЕКСПЕРИМЕНТУ
2.1 Матеріали
2.2 Методи експерименту
2.2.1 Виділення тирозинази з грибів Agaricus bisporus
2.2.2 Визначення загального вмісту поліфенолів
2.2.3 Визначення вмісту білка методом Лоурі в модифікації Хартрі
2.2.4 Визначення активності тирозинази за L-тирозином
2.2.5 Визначення активності тирозинази за L-ДОФА
2.2.6 Визначення рН-оптимуму ферменту
2.2.7 Визначення температурного оптимуму ферменту
2.2.8 Визначення впливу органічних розчинників на активність тирозинази
2.2.9 Визначення кінетичних параметрів окиснення тирозину з використанням тирозинази
2.2.10 Визначення кінетичних параметрів інгібування тирозинази
3. ОБГОВОРЕННЯ РЕЗУЛЬТАТІВ
3.1 Модифікація методу виділення тирозинази з грибів Agaricus bisporus
3.2 Дослідження фізико-хімічних властивостей виділеної тирозинази
3.3 Вивчення кінетичних параметрів окиснення тирозину, що каталізується тирозиназою
3.4 Кінетичні особливості інгібування тирозинази
4 ОХОРОНА ПРАЦІ
4.1 Аналіз можливих небезпечних і шкідливих факторів у лабораторії
4.1.1 Повітря робочої зони
4.1.2 Мікроклімат
4.1.3 Виробниче освітлення
4.1.4 Аналіз шуму у робочій зоні
4.1.5 Електробезпека
4.1.6 Пожежна безпека
4.2 Заходи, спрямовані на усунення або зниження впливу небезпечних та шкідливих факторів у лабораторії
4.2.1 Засоби підтримання чистоти робочого повітря
4.2.2 Заходи щодо нормалізації параметрів мікроклімату
4.2.3 Оптимізація освітлення
4.2.4 Засоби захисту від підвищеного рівня шуму
4.2.5 Захисні заходи у електроустаткуванні
4.2.6 Заходи з пожежної безпеки
4.3 Визначення витрат води на зовнішнє та внутрішнє гасіння пожежі виробничої будівлі
ВИСНОВКИ
СПИСОК ЛІТЕРАТУРИ
СПИСОК СКОРОЧЕНЬ
БАР - біологічно активна речовина
БСА – бичачий сироватковий альбумін
L-ДОФА – 3,4-дигідрокси-L-α-фенілаланін
ДМСО - диметилсульфоксид
ПЕГ – поліетиленгліколь
IC50 - концентрація напівмаксимального інгібування
Kі – константа інгібування
Km – константа Міхаеліса
Vмакс – максимальна швидкість
ВСТУП
Інгібітори ферментів викликають значний інтерес для з'ясування механізмів ферментативного каталізу, допомагають встановити роль окремих ферментів в метаболізмі. В основі дії багатьох лікарських препаратів лежить інгібування активності ферментів, тому визначення кінетичних особливостей цього процесу вкрай важливо для біохімії, фармакології і медицини.
Утворення меланіну в організмі людини відіграє важливу роль у захисті від шкідливого ультрафіолетового випромінювання, що може сприяти тяжким захворюванням, а саме злоякісним новоутворенням шкіри.
...
1.1 Структура, функціональні особливості, активність ферменту тирозинази Agaricus bisporus
Тирозиназа (монофенол, дигідрокси-L-фенілаланін: кисень оксидоредуктаза КФ 1.14.18.1) - фермент, що містить мідь та каталізує окиснення моно-, дифенолів, хлорфенолів, поліфенолів, амінофенолів, ароматичних амінів та ін. в присутності молекулярного кисню [1].
Тирозиназа - унікальний фермент в каталітичному відношенні, проявляє два типи активностей: монофенолазну або крезолазну активність (о‑гідроксилювання монофенолів з утворенням о-дифенолу) і дифенолазну або пірокатехазну активність (окиснення о-дифенолу до о-хінонів) (схеми 1, 2) [2].
Тирозиназа каталізує окиснення фенольних сполук з різними замісниками R: H, Cl, Br, NH2, CnH2n+1, COOH, ОCnH2n+1, CN, SCN [3].
Цей поширений фермент адаптований до виконання різних фізіологічних функцій. Тирозинази каталізують утворення меланіну, який є одним з найбільш розповсюджених пігментів бактерій, грибів, рослин і тварин.
...
1.2.1 Механізм утворення меланіну та способи попередження меланогенезу
Існують два основних типи меланіну: еумеланіни (мають коричнево-чорний колір) і феомеланіни (від жовтого до червоно-коричневого). Обидва пігменти утворюються в ході послідовних ферментативних і хімічних реакцій. Перша фаза полягає в о-гідроксилюванні тирозину до ДОФА, і окисненні останнього до дофахінону, що каталізуються тирозиназами. Утворений о-хінон зазнає два типи реакцій: внутрішньомолекулярне 1,4‑ приєднання до бензольного циклу, що приводить до циклізації молекули з утворенням дофахрому, і приєднання води до бензольного циклу з отриманням тригідроксильованого фенолу (ТОФА), який неферментативно окиснюється до п-тофахінону, що також перетворюється в результаті в дофахром (рис. 1.3). Далі дофахром зазнає цілий ряд ферментативних і хімічних перетворень з утворенням еумеланінів, феомелінінів і меланінів змішаного типу [7].
Рис. 1.3 Біосинтез меланіну від тирозину до ДОФАхрому [7].
...
1.2.2 Основні групи інгібіторів тирозинази
Живі організми виробили різноманітні способи захисту від ультрафіолетового випромінювання, тому природа є невичерпним джерелом інгібіторів тирозинази. Під час дослідження інгібіторів виникає проблема неможливості порівняння їх значення ІС50 через відмінності в умовах визначення активності, включаючи різні концентрації субстратів, різний час інкубації, а також препарати ферменту різного ступеня очищення. Тому як позитивний контроль зазвичай використовують добре відомий інгібітор тирозинази, наприклад, койєву кислоту.
Поліфеноли
Поліфеноли є групою різноманітних сполук, що містять чисельні фенольні функціональні групи, і представлених в природі. Поліфеноли є найчисленнішою групою серед інгібіторів в наш час. Оскільки деякі з поліфенолів є субстратами тирозинази, то їх здатність виступати як інгібіторів залежить від наявності та положення в них додаткових замісників.
До найбільш чисельних і досліджених поліфенолів відносяться флавоноїди.
...
2.2 Методи експерименту
2.2.1 Виділення тирозинази із грибів Agaricus bisporus
Наважку грибів (1 кг) промивали дистильованою водою і гомогенізували в 2 дм3 охолодженого екстрагенту: водного розчину, що містить 1% аскорбінової кислоти і 0,2% бензойної кислоти. Значення рН (5,5) встановлювали шляхом додавання розчину гідроксиду амонію. По завершенню гомогенізації суміш перемішували протягом години, підтримуючи температуру 0 °С, для проходження процесу екстракції ферменту. Суміш відфільтровували і центрифугували при температурі 0 ºС і 11 000 об / хв (10 000 g) протягом 10 хв [87].
Отриманий розчин насичували сульфатом амонію до 80%. Розчин відстоювали для формування осаду протягом 3 годин, після чого центрифугували при 11 000 об / хв. (10 000 g) 10 хв. Отриманий осад розчиняли в 10 см3 розчину бензойної та аскорбінової кислот. Розчин діалізували проти розчину аскорбінової кислоти. Повноту діалізу визначали за вмістом іонів амонію.
...
3 ОБГОВОРЕННЯ РЕЗУЛЬТАТІВ
3.1 Модифікація методу виділення тирозинази із грибів Agaricus bisporus
Із грибів Agaricus bisporus виділяли препарат тирозинази. За основу брали метод Коена [87]. Метод виділення ензиму модифікували додаванням до ферментного препарату полі етиленгліколю-4000 (35%) в процесі екстракції. Схема виділення ферменту представлена на рис. 3.1.
Рис. 3.1 Схема виділення частково очищеного препарату тирозинази грибівAgaricus bisporus
ПЕГ-4000 додвали для видалення ендогенних поліфенолів з отриманого препарату ензиму, адже продукти їх окиснення є дуже реакційно-здатними і необоротно зв’язуються з тирозиназою, знижуючи її активність. У розчині ПЕГ із заданою концентрацією тирозиназа не розчиняється, на відміну від поліфенольних сполук, тому модифікація методу дозволилазменшити в 3 рази кількість останніх,що сприяло підвищенню активності тирозиназа на 25%. (Табл. 3.1).
Таблиця 3.
...
3.2 Дослідження фізико-хімічних властивостей виділеної тирозинази
При вивченні виділеного за модифікованим методом ензиму необхідно було вивчити його фізико-хімічні властивості у порівнянні із даними приведеними в літературі.
Вивчення рН-профілю отриманого ензиму показало, що рН-оптимум тирозинази становить 6,5, а висока ступінь збереження активності спостерігається при рН 5,5 - 7,0 (Табл. 3.3),що характерно і для комерційних препаратів [94].
Вплив температури на активність вільної тирозинази визначали в інтервалі температур 2-80 °С. Термооптимум отриманого ензиму становив 40 °С (Табл. 3.3).
Показано значне збереження активності тирозинази при низьких температурах, так при 2 ºС зберігається понад 20% вихідної активності і висока активність в умовах високих температур, при 70 ° С фермент зберігає ≈ 50% фенолоксідазной активності [95].
Таблиця 3.3 Вплив рН і температури інкубаційного середовища на активність тирозинази
рН
Активність тирозинази, % от макс.
...
3.3Вивчення кінетичних параметрів окиснення тирозину, що каталізується тирозиназою
Для вивчення кінетичних параметрів інгібування активності тирознази необхідно було вивчити кінетику окиснення тирозина з використанням виділеного ензиму у відсутності інгібіторів його активності.
Незважаючи на певний обсяг знань щодо препаратів тирозинази з Agaricus bisporus, визначення кінетичних параметрів функціонування виділених препаратів ензиму є необхідним, через відмінність способу виділення, та умовдослідження.
У тирозиназному каталізі беруть участь два субстрати: молекулярний кисень і фенольна сполука. Відомо, що в процесі каталізу фермент повністю насичений киснем, про що свідчать значення Кm за киснем, що становлять для різних фенольних субстратів 0,04-55,6 мкмоль/дм3, що значно нижче розчинності кисню в воді (1,3 ммоль/дм3 при 25 °С), тому вивчення кінетичних особливостей каталізу здійснювали за тирозином.
...
3.4Кінетичні особливості інгібування тирозинази
Інгібітори викликають значний інтерес для з'ясування механізмів ферментативного каталізу, допомагають встановити роль окремих ферментів в метаболізмі.В основі дії багатьох лікарських препаратів лежить інгібування активності ферментів, тому визначеннякінетичних особливостей цього процесу вкрай важливо для біохімії, фармакології і медицини.
Відомо, що 4,4’-дигідроксібіфеніл і його похідні є високоефективними інгібіторами тирозинази, тому вивчення подібних за структурою сполук представляло значний інтерес. Для проведення кінетичних досліджень були обрані 2-гідроксибензиліден-2-амінофенол і бензиліденанілін (Рис. 3.4).
Рис. 3.4 А – бензиліденанілін; Б – 2-гідроксибензиліден-2-амінофенол.
Кінетичні дослідження інгібування активності тирозинази обраними сполуками проводили при чотирьох концентраціях для кожного з бензиліденанілінів.
...
4.1.1 Повітря робочої зони
При проведенні дослідів у хімічній лабораторії використовуються різні сполуки, які при контакті з організмом людини можуть призводити до виробничих травм, професійних захворювань, або розладів у стані здоров’я. Найбільш практичне значення для характеристики токсичності речовини має їх ГДК у повітрі робочої зони, значення яких приведені в ГОСТ 12.1.005-88.ССБТ. Общие санитарно-гигиенические требования. Найчастіше такі речовини потрапляють у повітря у вигляді пилу, газів або пари, а далі через органи дихання - в організм людини. Основними речовинами, які забруднюють повітря робочої зони під час виконання практичних завдань дипломної роботи, є диметилсульфоксид, гідроксид натрію та етиловий спирт.
Згідно з вищенаведеним нормативним документом концентрації цих речовин у повітрі робочої зони не повинні перевищувати гранично допустимі концентрації ГДКр.з., приведені у табл. 4.1.
Таблиця 4.
...
4.1.2 Мікроклімат
Одним із багатьох завдань, які повинні вирішуватися охороною праці, є забезпечення нормальних мікрокліматичних умов (температури, вологості тощо).
Робота в хімічній лабораторії включає в себе проведення хімічних дослідів, використання електричних пристроїв і виконується сидячи, стоячи, зв'язана з ходінням та деяким фізичним напруженням. Згідно з ДСН 3.3.6.042-99."Мікроклімат виробничих приміщень" такі види робіт відносяться до категорії Іб - легкі фізичні роботи. Для цієї категорії робіт наведені допустимі величини температури у приміщенні та відносної вологості (табл. 4.2).
Таблиця 4.2 - Параметри мікроклімату
Пора року
Температура, °С
Відносна вологість, %
Допустима
Дійсна
Допустима
Дійсна
Холодна
20-24
16-21
75
75
Тепла
21-28
21-25
60
60
Проаналізувавши таблицю, видно, що параметри мікроклімату, окрім температури у холодний період року, відповідають приведеним у нормативному документі.
...
4.1.3 Виробниче освітлення
Залежно від джерела світла виробниче освітлення може бути: природним, що створюється прямими сонячними променями та розсіяним світлом небосхилу; штучним, що створюється електричними джерелами світла; сполученим, при якому недостатнє за нормами природне освітлення доповнюється штучним.
При поганому освітленні людина швидко втомлюється, працює менш продуктивно, зростає потенційна небезпека помилкових дій і нещасних випадків. В лабораторії використовується вимірювальний посуд (піпетки, бюретки тощо) та обладнання, робота з якими викликає перенапруження очей, якщо освітлення не є достатнім та не відповідає нормам (ДБН В.2.5-28-2006. Природне та штучне освітлення; ДСанПіН 3.3.2-007-98. Державні санітарні правила і норми з візуальними дисплейними терміналами ЕОМ).
...
1. Jolly Jr. R.C., Robb D.A., Mason H.S. The multiple forms of mushroom tyrosinase // J. Biol. Chem. – 1969. – V. 244. – P. 1593-1599.
2. Espin J.C., Varon R., Fenoll L.G., et al. Kinetic characterization of the substrate specificity and mechanism of mushroom tyrosinase // Eur. J. Biochem. – 2000. – V. 267. – P. 1270-1279.
3. Гукасян Г.С. Очистка и некоторые свойства тирозиназы из Aspergillus flavipes // Биохимия. – 1991. v Т. 64, № 4. – С. 497-501.
4. Marmaras V.J., Bournazos S.N., Katsoris P.G., et al. Defenсe mechanisms in insects: certain integumental proteins and tyrosinase are responsible for nonself-recognition and immobilization of Escherichia coli in the cuticle of developing Ceratitis capitata // Arch. Insect. Biochem. Physiol. – 1993. – V. 23, №4. – P. 169-180.
5. Halaouli S., Aster M., Sigoillot Fenoll I. C., et al. Fungal tyrosinases: new prospects in molecular characteristics, bioengineering and biotechnological application // I. Appl. Microbiol. – 2006. – V. 100. –
P. 219-232.
6. Хейнару Э. Активность о-дифенолазы в растениях // Труды по физиол. биохим. растений. – 1975. – Т. 4. – С. 52-65.
7. Sánchez-Ferrer A., Rodríguez-López J.N., García-Cánovas F., et al. Tyrosinase: a comprehensive review of its mechanism // Biochim. Biophys. Acta. – 1995. – V. 1247. – P. 1-11.
8. Bouchilloux S., McMahill P., Mason H.S. The multiple forms of mushroom tyrosinase. Purification and molecular properties of the enzymes // J. Biol. Chem. – 1963. – V. 238, № 10. – P. 1699-1707.
9. Ismaya W.T., Rozeboom H.J.,Weijn A., et al. Crystal structure ofAgaricus bisporus mushroom tyrosinase: identity of the tetramer subunits and interaction with tropolone // Biochemistry. – 2011. – V. 50, № 24. – Р. 5477-5486.
10. Robb D.A., Gutteridge S. The polypeptide composition of two fungal tyrosinases // Phytochem. – 1981. – V. 20. – P. 1481-1485.
11. Naish-Byfield S., Cooksey C.J. , Riley P.A. Oxidation of monohydric phenol substrates by tyrosinase: effect of dithiothreitol on kinetics // Biochem. J. – 1994. – V. 304. – P. 155–162.
12. Robb D.A., Gutteridge S. The polypeptide composition of two fungal tyrosinases // Phytochem. – 1981. – V. 20. – P. 1481-1485.
13. Cabanes J., Chazarra S., Garcia-Carmona F. Tyrosinase kinetics: a semi-quantative model of the mechanism of oxidation of monohydric and dihydric phenolic substrates-reply // J.Theor. Biol. – 2002. – V. 214. – P. 321–325.
14. Fenoll L.G., Rodrigyes-Lopez L.N., Garcia-Sevilla F. Oxidation by mushroom tyrosinase of monophenols generating slightly unstable o-quinones // Eur. J. Biochem. – 2000. – V. 267. – P. 5865-5878.
15. Lee K.Y., Mooney D.J. Hydrogels for tissue engineering // Chem. Rev. – 2001. – V. 101. – P. 1869-1879.
16. Chen T., Embree H.D., Wu L.-Q. In vitro protein-polysaccharide conjugation: tyrosinase catalysed conjugation of gelatin and chitosan // Biopolymers. – 2002. – V. 64. – P. 292-302.
17. Matheis M., Whitaker J.R. A review: enzymatic cross-linking of proteins applicable to foods // J. Food. Biochem. – 1987. – V. 11. – P. 309-327.
18. Færgemand M., Otte J., Qvist K.B. Cross-linking of whey рroteins by enzymatic oxidation // J. Agric. Food.Chem. – 1998. – V. 46. – P. 1326-1333.
19. Espin J.C., Soler-Rivas C., Cantos E., et al. Synthesis of the antioxidant hydroxytyrosol using tyrosinase as biocatalyst// J. Agric. Food. – 2001. – Т. 49, № 3. – P. 1187-1193.
20. Seetharam G., Saville B.A. L-DOPA production from tyrosinase immobilized on zeolite // Enzym. Microb. Technol. – 2002. – V. 31, № 6. – P. 747-753.
21. Haq I., Ali S., Qadeer M.A. Biosynthesis of L-DOPA by Aspergillus oryzae // Biores. Technol. – 2002. – V. 85. – P. 25-29.
22. Wang X., Chen L., Zhu Z.,et al. Tyrosinase biosensor based on interdigitated electrodes for herbicides determination // Int. J. Electrochem. Sci. – 2006. – V. 1. – Р. 55-61.
23. Zhang T., Tian B., Kong J., et al. A sensitive mediator-free tyrosinase biosensor based on an inorganic–organic hybrid titania sol–gel matrix// Anal. Chim. Acta. – 2003. – V. 489, № 2. – Р. 199-206.
24. Ensuncho L., Alvarez-Cuenca M., Legge R.L. Removal of aqueous phenol using immobilized enzymes in a bench scale and pilot scale three-phase fluidized bed reactor // Bioprocess. Biosyst. Eng. – 2005. – V. 21, № 4. – P. 185-191.
25. Riley P.A. Molecules in focus: Melanin // Int. J. Biochem. Cell. Biol. – 1997. – V. 29. – P. 1235-1239.
26. Bell A.A., Wheeler M.H. Biosynthesis and functions of fungal melanins // Ann. Rev. Phytopathol. – 1986. – V. 24. – P. 411-451.
27. Strattford M.R., Ramsden C.A., Riley P.A. Mechanistic studies of the inactivation of tyrosinase by resorcinol // Bioorg. Med. Chem. - 2013. - V. 21. - P. 1166-1173.
28. Chang T.S. An updated review of tyrosinase inhibitors // Int. J. Mol. Sci. - 2009. V. 10. - P. 2440-2475.
29. Liang C.P., Chang C.H., Liang C.C., et al. In vitro antioxidant activities, free radical scavening capacity, and tyrosinase inhibitory of flavonoid compounds and ferulic acid from Spiranthes sinensis // Molecules. - 2014. - V. 19. - P. 4681-4694.
30. Harborne, J.B.; Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry 2000, 55, 481-504.
31. Kubo, I.; Kinst-Hori, I. Flavonols from saffron flower: tyrosinase inhibitory activity and inhibition mechanism. J. Agric. Food Chem. 1999, 47, 4121-4125.
32. Kubo, I.; Kinst-Hori, I.; Chaudhuri, S.K.; Kubo, Y.; Sánchez, Y.; Ogura, T. Flavonols from Heterotheca inuloides: tyrosinase inhibitory activity and structural criteria. Bioorg. Med. Chem. 2000, 8, 1749-1755.
33. Xie, L.P.; Chen, Q.X.; Huang, H.; Wang, H.Z.; Zhang, R.Q. Inhibitory effects of some flavonoids on the activity of mushroom tyrosinase. Biochemistry 2003, 68, 487-491.
34. Matsuda, H.; Higashino, M.; Chen, W.; Tosa, H.; Iinuma, M.; Kubo, M. Studies of cuticle drugs from natural sources. III. Inhibitory effect of Myrica rubra on melanin biosynthesis. Biol. Pharm. Bull. 1995, 18, 1148-1150.
35. Lee, S.H.; Choi, S.Y.; Kim, H.; Hwang, J.S.; Lee, B.G.; Gao, J.J.; Kim, S.Y. Mulberroside F isolated from the leaves of Morus alba inhibits melanin biosynthesis. Biol. Pharm. Bull. 2002, 25, 1045-1048
36. Ryu, Y.B.; Ha, T.J.; Curtis-Long, M.J.; Ryu, H.W.; Gal, S.W.; Park, K.H. Inhibitory effects on mushroom tyrosinase by flavones from the stem barks of Morus lhou (S.) Koidz. J. Enzyme Inhib. Med. Chem. 2008, 23, 922-930.
37. Shin, N.H.; Ryu, S.Y.; Choi, E.J.; Kang, S.H.; Chang, I.M.; Min, K.R.; Kim, Y. Oxyresveratrol as the potent inhibitor on dopa oxidase activity of mushroom tyrosinase. Biochem. Biophys. Res. Commun. 1998, 243, 801-803.
38. Jeong, S.H.; Ryu, Y.B.; Curtis-Long, M.J.; Ryu, H.W.; Baek, Y.S.; Kang, J.E.; Lee, W.S.; Park, K.H. Tyrosinase Inhibitory Polyphenols from Roots of Morus lhou. J. Agric. Food Chem. 2009, 57, 1195-1203.
39. Arung, E.T.; Shimizu, K.; Kondo, R. Inhibitory effect of artocarpanone from Artocarpus heterophyllus on melanin biosynthesis. Biol. Pharm. Bull. 2006, 29, 1966-1969.
40. Zheng, Z.P.; Cheng, K.W.; To, J.T.; Li, H.; Wang, M. Isolation of tyrosinase inhibitors from Artocarpus heterophyllus and use of its extract as antibrowning agent. Mol. Nutr. Food Res. 2008, 52, 1530-1538.
41. Miyazawa, M.; Tamura, N. Inhibitory compound of tyrosinase activity from the sprout of Polygonum hydropiper L. (Benitade). Biol. Pharm. Bull. 2007, 30, 595-597.
42. An, S.M.; Kim, H.J.; Kim, J.E.; Boo, Y.C. Flavonoids, taxifolin and luteolin attenuate cellular melanogenesis despite increasing tyrosinase protein levels. Phytother. Res. 2008, 22, 1200-1207.
43. Yokota, T.; Nishio, H.; Kubota, Y.; Mizoguchi, M. The inhibitory effect of glabridin from licorice extracts on melanogenesis and inflammation. Pigment Cell Res. 1998, 11, 355-361.
44. Nerya, O.; Vaya, J.; Musa, R.; Izrael, S.; Ben-Arie, R.; Tamir, S. Glabrene and isoliquiritigenin as tyrosinase inhibitors from Licorice roots. J. Agric. Food Chem. 2003, 51, 1201-1207.
45. Kim, H.J.; Seo, S.H.; Lee, B.G.; Lee, Y.S. Identification of tyrosinase inhibitors from Glycyrrhiza uralensis. Planta Med. 2005, 71, 785-787.
46. Kim, J.H.; Baek, S.H.; Kim, D.H.; Choi, T.Y.; Yoon, T.J.; Hwang, J.S.; Kim, M.R.; Kwon, H.J.; Lee, C.H. Downregulation of melanin synthesis by haginin A and its application to in vivo lightening model. J. Invest. Dermatol. 2008, 128, 1227-1235.
47. Baek, S.; Kim, J.; Kim, D.; Lee, C.; Kim, J.; Chung, D.K.; Lee, C. Inhibitory effect of dalbergioidin isolated from the trunk of Lespedeza cyrtobotrya on melanin biosynthesis. J. Microbiol. Biotechnol. 2008, 18, 874-879
48. Fu, B.; Li, H.; Wang, X.; Lee, F.S.; Cui, S. Isolation and identification of flavonoids in licorice and a study of their inhibitory effects on tyrosinase. J. Agric. Food Chem. 2005, 53, 7408-7414.
49. Kim, S.J.; Son, K.H.; Chang, H.W.; Kang, S.S.; Kim, H.P. Tyrosinase inhibitory prenylated flavonoids from Sophora flavescens. Biol. Pharm. Bull. 2003, 26, 1348-1350.
50. Hyun, S.K.; Lee, W.H.; Jeong, da.M.; Kim, Y.; Choi, J.S. Inhibitory effect of kurarinol, kuraridinol, and trifolirhizin from Sophora flavescens on tyrosinase and melanin synthesis. Biol. Pharm. Bull. 2008, 31, 154-158.
51. Zhang, X.; Hu, X.; Hou, A.; Wang. H. Inhibitory effect of 2,4,2',4'-tetrahydroxy-3-(3-methyl-2- butenyl)-chalcone on tyrosinase activity and melanin biosynthesis. Biol. Pharm. Bull. 2009, 32, 86-90.
52. Shimizu, K.; Kondo, R.; Sakai, K. Inhibition of tyrosinase by flavonoids, stilbenes and related 4- substituted resorcinols: structure-activity investigations. Planta Med. 2000, 66, 11-15.
53. Chen, Q.X.; Ke, L.N.; Song, K.K.; Huang, H.; Liu, X.D. Inhibitory effects of hexylresorcinol and dodecylresorcinol on mushroom (Agaricus bisporus) tyrosinase. Protein J. 2004, 23, 135-141.
54. Nerya, O.; Musa, R.; Khatib, S.; Tamir, S.; Vaya, J. Chalcones as potent tyrosinase inhibitors: the effect of hydroxyl positions and numbers. Phytochemistry 2004, 65, 1389-1395.
55. Khatib, S.; Nerya, O.; Musa, R.; Shmuel, M.; Tamir, S.; Vaya, J. Chalcones as potent tyrosinase inhibitors: the importance of a 2,4-substituted resorcinol moiety. Bioorg. Med. Chem. 2005, 13, 433-441.
56. Jun, N.; Hong, G.; Jun, K. Synthesis and evalution of 2',4',6'-trihydroxychalcones as a new class of tyrosine inhibitors. Bioorg. Med. Chem. 2007, 15, 2396-2402.
57. Kim, D.; Park, J.; Kim, J.; Han, C.; Yoon, J.; Kim, N.; Seo, J.; Lee, C. Flavonoids as mushroom tyrosinase inhibitors: A fluorescence quenching study. J. Agric. Food Chem. 2006, 54, 935-941.
58. Kim, Y.M.; Yun, J.; Lee, C.K.; Lee, H.; Min, K.R.; Kim, Y. Oxyresveratrol and hydroxystilbene compounds. Inhibitory effect on tyrosinase and mechanism of action. J. Biol. Chem. 2002, 277, 16340-16344
59. Kuniyoshi, S.; Seiji, Y.; Ryuichiro, K. A new stilbene with tyrosinase inhibitory activity form Chlorophora excelsa. Chem. Pharm. Bull. 2003, 51, 318-319.
60. Jones, K.; Hughes, J.; Hong, M.; Jia, Q.; Orndorff, S. Modulation of melanogenesis by aloesin: a competitive inhibitor of tyrosinase. Pigment Cell Res. 2002, 15, 335-340.
61. Choi, S.; Lee, S.K.; Kim, J.E.; Chung, M.H.; Park, Y.I. Aloesin inhibits hyperpigmentation induced by UV radiation. Clin.Exp. Dermatol. 2002, 27, 513-515.
62. Lee, H.S. Tyrosinase inhibitors of Pulsatilla cernua root-derived materials. J. Agric. Food Chem. 2002, 50, 1400-1403.
63. Jiménez, M.; Chazarra, S.; Escribano, J.; Cabanes, J.; García-Carmona, F. Competitive inhibition of mushroom tyrosinase by 4-substituted benzaldehydes. J. Agric. Food. Chem. 2001, 49, 4060-4063.
64. Kubo, I.; Kinst-Hori, I. 2-Hydroxy-4-methoxy benzaldehyde: a potent tyrosinase inhibitor from African medicinal plants. Planta Med. 1999, 65, 19-22.
65. Kubo, I.; Kinst-Hori, I. Tyrosinase inhibitors from cumin. J. Agric. Food Chem. 1998, 46, 5338-5341.
66. Kubo, I.; Kinst-Hori, I. Tyrosinase inhibitory activity of the olive oil flavor compounds. J. Agric. Food Chem. 1999, 47, 4574-4578.
67. Conrad, J.S.; Dawso, S.R.; Hubbard, E.R.; Meyers, T.E.; Strothkamp, K.G. Inhibitor binding to the binuclear active site of tyrosinase: temperature, pH and solvent deuterium isotope effects. Biochemistry 1994, 33, 5739-5744.
68. Kang, H.S.; Choi, J.H.; Cho, W.K.; Park, J.C.; Choi, J.S. A sphingolipid and tyrosinase inhibitors from the fruiting body of Phellinus linteus. Arch. Pharm. Res. 2004, 27, 742-750.
69. Jeon, H.J.; Noda, M.; Maruyama, M.; Matoba, Y.; Kumagai, T.; Suqivama, M. Identification and kinetic study of tyrosinase inhibitors found in sake lees. J. Agric. Food Chem. 2006, 54, 9827-9833.
70. Maqid, A.A.; Voutquenne-Nazabadioko, L.; Bontemps, G.; Litaudon, M.; Lavaud, C. Tyrosinase inhibitors and sesquiterpene diglycosides from Guioa villosa. Planta Med. 2008, 74, 55-60.
71. Sabudak, T.; Khan, M.T.; Choudhary, M.I.; Oksuz, S. Potent tyrosinase inhibitors from Trifolium balansae. Nat. Prod. Res. 2006, 20, 665-670.
72. Khan, M.T.; Khan, S.B.; Ather, A. Tyrosinase inhibitory cycloartane type triterpenoids from the methanol extract of the whole plant of Amberboa ramosa Jafri and their structure-activity relationship. Bioorg. Med. Chem. 2006, 14, 938-943.
73. Leu, Y.L.; Hwang, T.L.; Hu, J.W.; Fang, J.Y. Anthraquinones from Polygonum cuspidatum as tyrosinase inhibitors for dermal use. Phytother. Res. 2008, 22, 552-556.
74. Devkota, K.P.; Khan, M.T.; Ranjit, R.; Lannang, A.M.; Samreen; Choudhary, M.I. Tyrosinase inhibitory and antileishmanial constituents from the rhizomes of Paris polyphylla. Nat. Prod. Res. 2007, 21, 321-327.
75. Azhar-Ul-Haq; Malik, A.; Khan, M.T.; Anwar-Ul-Haq; Khan, S.B.; Ahmad, A.; Choudhary, M.I. Tyrosinase inhibitory lignans from the methanol extract of the roots of Vitex negundo Linn. and their structure-activity relationship. Phytomedicine 2006, 13, 255-260.
76. Kang, H.S.; Kim, H.R.; Byun, D.S.; Son, B.W.; Nam, T.J.; Choi, J.S. Tyrosinase inhibitors isolated from the edible brown alga Ecklonia stolonifera. Arch. Pham. Res. 2004, 27, 1226-1232.
77. Gerdemann, C.; Eicken, C.; Krebs, B. The crystal structure of catechol oxidase: new insight into the function of type-3 copper proteins. Acc. Chem. Res. 2002, 35, 183-191.
78. Shiino, M.; Watanabe, Y.; Umezawa, K. Synthesis of tyrosinase inhibitory activity of novel Nhydroxybenzyl-N-nitrosohydroxylamines. Bioorg. Chem. 2003, 31, 129–135.
79. Koketsu, M.; Choi, S.Y.; Ishihara, H.; Lim, B.O.; Kim, H.; Kim, S.Y. Inhibitory effects of 1,3- selenazol-4-one derivatives on mushroom tyrosinase. Chem. Pharm. Bull. 2002, 50, 1594-1596.
80. Ha, S.K.; Koketsu, M.; Lee, K.; Choi, S.Y.; Park, J.H.; Ishihara, H.; Kim, S.Y. Inhibition of tyrosinase activity by N,N-unsubstituted selenourea derivatives. Biol. Pharm. Bull. 2005, 28, 838-840.
81. Ahn, S.J.; Koketsu, M.; Ishihara, H.; Lee, S.M.; Ha, S.K.; Lee, K.H.; Kang, T.H.; Kima, S.Y. Regulation of melanin synthesis by selenium-containing carbohydrates. Chem. Pharm. Bull. 2006, 54, 281-286.
82. Tsou, C.L. Kinetics of substrate reaction during irreversible modification of enzyme activity. Adv. Enzymol. Relat. Areas. Mol. Biol. 1988, 61, 381-436.
83. Espín, J.C.; Wichers, H.J. Effect of captopril on mushroom tyrosinase activity in vitro. Biochim. Biophys. Acta. 2001, 1544, 289-300
84. Haghbeen, K.; Saboury, A.A.; Karbassi, F. Substrate share in the suicide inactivation of mushroom tyrosinase. Biochim. Biophys. Acta 2004, 1675, 139-146.
85. Chang, T. S. Two potent suicide substrates of mushroom tyrosinase: 7, 8, 4'-trihydroxyisoflavone and 5, 7, 8,4'-tetrahydroxyisoflavone. J. Agric. Food Chem. 2007, 55, 2010-2015.
86. Chang, T.S. 8-Hydroxydaidzein is unstable in alkaline solutions. J. Cosmet. Sci. In press.
87. Пат. 2 956929 США, МКИ 195-68 / E. M. Cohen, L.L. Lerner. Tyrosinase concentrate and extractant and method for making the same – Заявл. 24.04.1958. Опубл.18.10.1960.
88. Singleton V. L., Othofer R., Lamnela-Raventos R. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent // Meth. Enzymol. - 1999. - V. 299. - P. 152-178.
89. Hartree E.F. Determination of protein: a modification of the Lowry method, that gives a linear photometric response // Anal. Biochem. – 1972. – V. 48, № 1. – P. 422-427.
90. Ikehata K. Color and toxicity removal following tyrosinase – catalyzed oxidation of phenols / K. Ikehata, J.A. Nicell // Biotechnol. Prog. – 2000. – V. 16, № 4. – P. 533-540.
91. Leeuwen J. V., Wichers H.J. Tyrosinase activity and isoform composition in separate tissues during development of Agaricus bisporus fruit bodies // Mycological Research. - 1999. - V. 103. - P. 413-418.
92. Келети Т. Основы ферментативной кинетики. - М.: Мир, 1990. - 348 с.
93. Jiménez M., Chazarra S., Escribano J. et al. Competitive Inhibition of Mushroom tyrosinase by 4-substituted benzaldehydes // J. Agric. Food Chem. - 2001. - V. 49. - P. 4060–4063.
94. Wada S. Removal of phenols and aromatic amines from wastewater by a combination treatment with tyrosinase and a coagulant / S. Wada, H. Ichikawa, K. Tatsumi // Biotechnol. Bioeng. – 1993. – V. 45. – P. 304-309.
95. Романовська І.І. Ферментативні методи елімінації фенольних полютантів / І.І. Романовська, О.В. Осійчук, Ю.А. Шестеренко, О.В. Севастьянов // Мікробіологія i біотехнологія. – 2008. – № 1(2). – С. 72-78.
96. Solomon E.I. Electronic structure contributions to function in bioinorganic chemistry / E.I.Solomon, M.D. Lowery // Science. – 1993. – V. 259. – P. 1575–1581.
97. Жидецький В.Ц., Джигирей В.С., Сторожук В.М. Практикум із охорони праці: Навчальний посібник. - Львів: Афіша, 2000. - 352 с.
Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям
ВСТУП
1 ОГЛЯД ЛІТЕРАТУРИ
1.1 Структура, функціональні особливості, активність ферменту тирозинази Agaricus bisporus
1.2 Інгібітори тирозинази
1.2.1 Механізм утворення меланіну та способи попередження меланогенезу
1.2.2 Основні групи інгібіторів тирозинази
2 МАТЕРІАЛИ І МЕТОДИ ЕКСПЕРИМЕНТУ
2.1 Матеріали
2.2 Методи експерименту
2.2.1 Виділення тирозинази з грибів Agaricus bisporus
2.2.2 Визначення загального вмісту поліфенолів
2.2.3 Визначення вмісту білка методом Лоурі в модифікації Хартрі
2.2.4 Визначення активності тирозинази за L-тирозином
2.2.5 Визначення активності тирозинази за L-ДОФА
2.2.6 Визначення рН-оптимуму ферменту
2.2.7 Визначення температурного оптимуму ферменту
2.2.8 Визначення впливу органічних розчинників на активність тирозинази
2.2.9 Визначення кінетичних параметрів окиснення тирозину з використанням тирозинази
2.2.10 Визначення кінетичних параметрів інгібування тирозинази
3. ОБГОВОРЕННЯ РЕЗУЛЬТАТІВ
3.1 Модифікація методу виділення тирозинази з грибів Agaricus bisporus
3.2 Дослідження фізико-хімічних властивостей виділеної тирозинази
3.3 Вивчення кінетичних параметрів окиснення тирозину, що каталізується тирозиназою
3.4 Кінетичні особливості інгібування тирозинази
4 ОХОРОНА ПРАЦІ
4.1 Аналіз можливих небезпечних і шкідливих факторів у лабораторії
4.1.1 Повітря робочої зони
4.1.2 Мікроклімат
4.1.3 Виробниче освітлення
4.1.4 Аналіз шуму у робочій зоні
4.1.5 Електробезпека
4.1.6 Пожежна безпека
4.2 Заходи, спрямовані на усунення або зниження впливу небезпечних та шкідливих факторів у лабораторії
4.2.1 Засоби підтримання чистоти робочого повітря
4.2.2 Заходи щодо нормалізації параметрів мікроклімату
4.2.3 Оптимізація освітлення
4.2.4 Засоби захисту від підвищеного рівня шуму
4.2.5 Захисні заходи у електроустаткуванні
4.2.6 Заходи з пожежної безпеки
4.3 Визначення витрат води на зовнішнє та внутрішнє гасіння пожежі виробничої будівлі
ВИСНОВКИ
СПИСОК ЛІТЕРАТУРИ
СПИСОК СКОРОЧЕНЬ
БАР - біологічно активна речовина
БСА – бичачий сироватковий альбумін
L-ДОФА – 3,4-дигідрокси-L-α-фенілаланін
ДМСО - диметилсульфоксид
ПЕГ – поліетиленгліколь
IC50 - концентрація напівмаксимального інгібування
Kі – константа інгібування
Km – константа Міхаеліса
Vмакс – максимальна швидкість
ВСТУП
Інгібітори ферментів викликають значний інтерес для з'ясування механізмів ферментативного каталізу, допомагають встановити роль окремих ферментів в метаболізмі. В основі дії багатьох лікарських препаратів лежить інгібування активності ферментів, тому визначення кінетичних особливостей цього процесу вкрай важливо для біохімії, фармакології і медицини.
Утворення меланіну в організмі людини відіграє важливу роль у захисті від шкідливого ультрафіолетового випромінювання, що може сприяти тяжким захворюванням, а саме злоякісним новоутворенням шкіри.
...
1.1 Структура, функціональні особливості, активність ферменту тирозинази Agaricus bisporus
Тирозиназа (монофенол, дигідрокси-L-фенілаланін: кисень оксидоредуктаза КФ 1.14.18.1) - фермент, що містить мідь та каталізує окиснення моно-, дифенолів, хлорфенолів, поліфенолів, амінофенолів, ароматичних амінів та ін. в присутності молекулярного кисню [1].
Тирозиназа - унікальний фермент в каталітичному відношенні, проявляє два типи активностей: монофенолазну або крезолазну активність (о‑гідроксилювання монофенолів з утворенням о-дифенолу) і дифенолазну або пірокатехазну активність (окиснення о-дифенолу до о-хінонів) (схеми 1, 2) [2].
Тирозиназа каталізує окиснення фенольних сполук з різними замісниками R: H, Cl, Br, NH2, CnH2n+1, COOH, ОCnH2n+1, CN, SCN [3].
Цей поширений фермент адаптований до виконання різних фізіологічних функцій. Тирозинази каталізують утворення меланіну, який є одним з найбільш розповсюджених пігментів бактерій, грибів, рослин і тварин.
...
1.2.1 Механізм утворення меланіну та способи попередження меланогенезу
Існують два основних типи меланіну: еумеланіни (мають коричнево-чорний колір) і феомеланіни (від жовтого до червоно-коричневого). Обидва пігменти утворюються в ході послідовних ферментативних і хімічних реакцій. Перша фаза полягає в о-гідроксилюванні тирозину до ДОФА, і окисненні останнього до дофахінону, що каталізуються тирозиназами. Утворений о-хінон зазнає два типи реакцій: внутрішньомолекулярне 1,4‑ приєднання до бензольного циклу, що приводить до циклізації молекули з утворенням дофахрому, і приєднання води до бензольного циклу з отриманням тригідроксильованого фенолу (ТОФА), який неферментативно окиснюється до п-тофахінону, що також перетворюється в результаті в дофахром (рис. 1.3). Далі дофахром зазнає цілий ряд ферментативних і хімічних перетворень з утворенням еумеланінів, феомелінінів і меланінів змішаного типу [7].
Рис. 1.3 Біосинтез меланіну від тирозину до ДОФАхрому [7].
...
1.2.2 Основні групи інгібіторів тирозинази
Живі організми виробили різноманітні способи захисту від ультрафіолетового випромінювання, тому природа є невичерпним джерелом інгібіторів тирозинази. Під час дослідження інгібіторів виникає проблема неможливості порівняння їх значення ІС50 через відмінності в умовах визначення активності, включаючи різні концентрації субстратів, різний час інкубації, а також препарати ферменту різного ступеня очищення. Тому як позитивний контроль зазвичай використовують добре відомий інгібітор тирозинази, наприклад, койєву кислоту.
Поліфеноли
Поліфеноли є групою різноманітних сполук, що містять чисельні фенольні функціональні групи, і представлених в природі. Поліфеноли є найчисленнішою групою серед інгібіторів в наш час. Оскільки деякі з поліфенолів є субстратами тирозинази, то їх здатність виступати як інгібіторів залежить від наявності та положення в них додаткових замісників.
До найбільш чисельних і досліджених поліфенолів відносяться флавоноїди.
...
2.2 Методи експерименту
2.2.1 Виділення тирозинази із грибів Agaricus bisporus
Наважку грибів (1 кг) промивали дистильованою водою і гомогенізували в 2 дм3 охолодженого екстрагенту: водного розчину, що містить 1% аскорбінової кислоти і 0,2% бензойної кислоти. Значення рН (5,5) встановлювали шляхом додавання розчину гідроксиду амонію. По завершенню гомогенізації суміш перемішували протягом години, підтримуючи температуру 0 °С, для проходження процесу екстракції ферменту. Суміш відфільтровували і центрифугували при температурі 0 ºС і 11 000 об / хв (10 000 g) протягом 10 хв [87].
Отриманий розчин насичували сульфатом амонію до 80%. Розчин відстоювали для формування осаду протягом 3 годин, після чого центрифугували при 11 000 об / хв. (10 000 g) 10 хв. Отриманий осад розчиняли в 10 см3 розчину бензойної та аскорбінової кислот. Розчин діалізували проти розчину аскорбінової кислоти. Повноту діалізу визначали за вмістом іонів амонію.
...
3 ОБГОВОРЕННЯ РЕЗУЛЬТАТІВ
3.1 Модифікація методу виділення тирозинази із грибів Agaricus bisporus
Із грибів Agaricus bisporus виділяли препарат тирозинази. За основу брали метод Коена [87]. Метод виділення ензиму модифікували додаванням до ферментного препарату полі етиленгліколю-4000 (35%) в процесі екстракції. Схема виділення ферменту представлена на рис. 3.1.
Рис. 3.1 Схема виділення частково очищеного препарату тирозинази грибівAgaricus bisporus
ПЕГ-4000 додвали для видалення ендогенних поліфенолів з отриманого препарату ензиму, адже продукти їх окиснення є дуже реакційно-здатними і необоротно зв’язуються з тирозиназою, знижуючи її активність. У розчині ПЕГ із заданою концентрацією тирозиназа не розчиняється, на відміну від поліфенольних сполук, тому модифікація методу дозволилазменшити в 3 рази кількість останніх,що сприяло підвищенню активності тирозиназа на 25%. (Табл. 3.1).
Таблиця 3.
...
3.2 Дослідження фізико-хімічних властивостей виділеної тирозинази
При вивченні виділеного за модифікованим методом ензиму необхідно було вивчити його фізико-хімічні властивості у порівнянні із даними приведеними в літературі.
Вивчення рН-профілю отриманого ензиму показало, що рН-оптимум тирозинази становить 6,5, а висока ступінь збереження активності спостерігається при рН 5,5 - 7,0 (Табл. 3.3),що характерно і для комерційних препаратів [94].
Вплив температури на активність вільної тирозинази визначали в інтервалі температур 2-80 °С. Термооптимум отриманого ензиму становив 40 °С (Табл. 3.3).
Показано значне збереження активності тирозинази при низьких температурах, так при 2 ºС зберігається понад 20% вихідної активності і висока активність в умовах високих температур, при 70 ° С фермент зберігає ≈ 50% фенолоксідазной активності [95].
Таблиця 3.3 Вплив рН і температури інкубаційного середовища на активність тирозинази
рН
Активність тирозинази, % от макс.
...
3.3Вивчення кінетичних параметрів окиснення тирозину, що каталізується тирозиназою
Для вивчення кінетичних параметрів інгібування активності тирознази необхідно було вивчити кінетику окиснення тирозина з використанням виділеного ензиму у відсутності інгібіторів його активності.
Незважаючи на певний обсяг знань щодо препаратів тирозинази з Agaricus bisporus, визначення кінетичних параметрів функціонування виділених препаратів ензиму є необхідним, через відмінність способу виділення, та умовдослідження.
У тирозиназному каталізі беруть участь два субстрати: молекулярний кисень і фенольна сполука. Відомо, що в процесі каталізу фермент повністю насичений киснем, про що свідчать значення Кm за киснем, що становлять для різних фенольних субстратів 0,04-55,6 мкмоль/дм3, що значно нижче розчинності кисню в воді (1,3 ммоль/дм3 при 25 °С), тому вивчення кінетичних особливостей каталізу здійснювали за тирозином.
...
3.4Кінетичні особливості інгібування тирозинази
Інгібітори викликають значний інтерес для з'ясування механізмів ферментативного каталізу, допомагають встановити роль окремих ферментів в метаболізмі.В основі дії багатьох лікарських препаратів лежить інгібування активності ферментів, тому визначеннякінетичних особливостей цього процесу вкрай важливо для біохімії, фармакології і медицини.
Відомо, що 4,4’-дигідроксібіфеніл і його похідні є високоефективними інгібіторами тирозинази, тому вивчення подібних за структурою сполук представляло значний інтерес. Для проведення кінетичних досліджень були обрані 2-гідроксибензиліден-2-амінофенол і бензиліденанілін (Рис. 3.4).
Рис. 3.4 А – бензиліденанілін; Б – 2-гідроксибензиліден-2-амінофенол.
Кінетичні дослідження інгібування активності тирозинази обраними сполуками проводили при чотирьох концентраціях для кожного з бензиліденанілінів.
...
4.1.1 Повітря робочої зони
При проведенні дослідів у хімічній лабораторії використовуються різні сполуки, які при контакті з організмом людини можуть призводити до виробничих травм, професійних захворювань, або розладів у стані здоров’я. Найбільш практичне значення для характеристики токсичності речовини має їх ГДК у повітрі робочої зони, значення яких приведені в ГОСТ 12.1.005-88.ССБТ. Общие санитарно-гигиенические требования. Найчастіше такі речовини потрапляють у повітря у вигляді пилу, газів або пари, а далі через органи дихання - в організм людини. Основними речовинами, які забруднюють повітря робочої зони під час виконання практичних завдань дипломної роботи, є диметилсульфоксид, гідроксид натрію та етиловий спирт.
Згідно з вищенаведеним нормативним документом концентрації цих речовин у повітрі робочої зони не повинні перевищувати гранично допустимі концентрації ГДКр.з., приведені у табл. 4.1.
Таблиця 4.
...
4.1.2 Мікроклімат
Одним із багатьох завдань, які повинні вирішуватися охороною праці, є забезпечення нормальних мікрокліматичних умов (температури, вологості тощо).
Робота в хімічній лабораторії включає в себе проведення хімічних дослідів, використання електричних пристроїв і виконується сидячи, стоячи, зв'язана з ходінням та деяким фізичним напруженням. Згідно з ДСН 3.3.6.042-99."Мікроклімат виробничих приміщень" такі види робіт відносяться до категорії Іб - легкі фізичні роботи. Для цієї категорії робіт наведені допустимі величини температури у приміщенні та відносної вологості (табл. 4.2).
Таблиця 4.2 - Параметри мікроклімату
Пора року
Температура, °С
Відносна вологість, %
Допустима
Дійсна
Допустима
Дійсна
Холодна
20-24
16-21
75
75
Тепла
21-28
21-25
60
60
Проаналізувавши таблицю, видно, що параметри мікроклімату, окрім температури у холодний період року, відповідають приведеним у нормативному документі.
...
4.1.3 Виробниче освітлення
Залежно від джерела світла виробниче освітлення може бути: природним, що створюється прямими сонячними променями та розсіяним світлом небосхилу; штучним, що створюється електричними джерелами світла; сполученим, при якому недостатнє за нормами природне освітлення доповнюється штучним.
При поганому освітленні людина швидко втомлюється, працює менш продуктивно, зростає потенційна небезпека помилкових дій і нещасних випадків. В лабораторії використовується вимірювальний посуд (піпетки, бюретки тощо) та обладнання, робота з якими викликає перенапруження очей, якщо освітлення не є достатнім та не відповідає нормам (ДБН В.2.5-28-2006. Природне та штучне освітлення; ДСанПіН 3.3.2-007-98. Державні санітарні правила і норми з візуальними дисплейними терміналами ЕОМ).
...
1. Jolly Jr. R.C., Robb D.A., Mason H.S. The multiple forms of mushroom tyrosinase // J. Biol. Chem. – 1969. – V. 244. – P. 1593-1599.
2. Espin J.C., Varon R., Fenoll L.G., et al. Kinetic characterization of the substrate specificity and mechanism of mushroom tyrosinase // Eur. J. Biochem. – 2000. – V. 267. – P. 1270-1279.
3. Гукасян Г.С. Очистка и некоторые свойства тирозиназы из Aspergillus flavipes // Биохимия. – 1991. v Т. 64, № 4. – С. 497-501.
4. Marmaras V.J., Bournazos S.N., Katsoris P.G., et al. Defenсe mechanisms in insects: certain integumental proteins and tyrosinase are responsible for nonself-recognition and immobilization of Escherichia coli in the cuticle of developing Ceratitis capitata // Arch. Insect. Biochem. Physiol. – 1993. – V. 23, №4. – P. 169-180.
5. Halaouli S., Aster M., Sigoillot Fenoll I. C., et al. Fungal tyrosinases: new prospects in molecular characteristics, bioengineering and biotechnological application // I. Appl. Microbiol. – 2006. – V. 100. –
P. 219-232.
6. Хейнару Э. Активность о-дифенолазы в растениях // Труды по физиол. биохим. растений. – 1975. – Т. 4. – С. 52-65.
7. Sánchez-Ferrer A., Rodríguez-López J.N., García-Cánovas F., et al. Tyrosinase: a comprehensive review of its mechanism // Biochim. Biophys. Acta. – 1995. – V. 1247. – P. 1-11.
8. Bouchilloux S., McMahill P., Mason H.S. The multiple forms of mushroom tyrosinase. Purification and molecular properties of the enzymes // J. Biol. Chem. – 1963. – V. 238, № 10. – P. 1699-1707.
9. Ismaya W.T., Rozeboom H.J.,Weijn A., et al. Crystal structure ofAgaricus bisporus mushroom tyrosinase: identity of the tetramer subunits and interaction with tropolone // Biochemistry. – 2011. – V. 50, № 24. – Р. 5477-5486.
10. Robb D.A., Gutteridge S. The polypeptide composition of two fungal tyrosinases // Phytochem. – 1981. – V. 20. – P. 1481-1485.
11. Naish-Byfield S., Cooksey C.J. , Riley P.A. Oxidation of monohydric phenol substrates by tyrosinase: effect of dithiothreitol on kinetics // Biochem. J. – 1994. – V. 304. – P. 155–162.
12. Robb D.A., Gutteridge S. The polypeptide composition of two fungal tyrosinases // Phytochem. – 1981. – V. 20. – P. 1481-1485.
13. Cabanes J., Chazarra S., Garcia-Carmona F. Tyrosinase kinetics: a semi-quantative model of the mechanism of oxidation of monohydric and dihydric phenolic substrates-reply // J.Theor. Biol. – 2002. – V. 214. – P. 321–325.
14. Fenoll L.G., Rodrigyes-Lopez L.N., Garcia-Sevilla F. Oxidation by mushroom tyrosinase of monophenols generating slightly unstable o-quinones // Eur. J. Biochem. – 2000. – V. 267. – P. 5865-5878.
15. Lee K.Y., Mooney D.J. Hydrogels for tissue engineering // Chem. Rev. – 2001. – V. 101. – P. 1869-1879.
16. Chen T., Embree H.D., Wu L.-Q. In vitro protein-polysaccharide conjugation: tyrosinase catalysed conjugation of gelatin and chitosan // Biopolymers. – 2002. – V. 64. – P. 292-302.
17. Matheis M., Whitaker J.R. A review: enzymatic cross-linking of proteins applicable to foods // J. Food. Biochem. – 1987. – V. 11. – P. 309-327.
18. Færgemand M., Otte J., Qvist K.B. Cross-linking of whey рroteins by enzymatic oxidation // J. Agric. Food.Chem. – 1998. – V. 46. – P. 1326-1333.
19. Espin J.C., Soler-Rivas C., Cantos E., et al. Synthesis of the antioxidant hydroxytyrosol using tyrosinase as biocatalyst// J. Agric. Food. – 2001. – Т. 49, № 3. – P. 1187-1193.
20. Seetharam G., Saville B.A. L-DOPA production from tyrosinase immobilized on zeolite // Enzym. Microb. Technol. – 2002. – V. 31, № 6. – P. 747-753.
21. Haq I., Ali S., Qadeer M.A. Biosynthesis of L-DOPA by Aspergillus oryzae // Biores. Technol. – 2002. – V. 85. – P. 25-29.
22. Wang X., Chen L., Zhu Z.,et al. Tyrosinase biosensor based on interdigitated electrodes for herbicides determination // Int. J. Electrochem. Sci. – 2006. – V. 1. – Р. 55-61.
23. Zhang T., Tian B., Kong J., et al. A sensitive mediator-free tyrosinase biosensor based on an inorganic–organic hybrid titania sol–gel matrix// Anal. Chim. Acta. – 2003. – V. 489, № 2. – Р. 199-206.
24. Ensuncho L., Alvarez-Cuenca M., Legge R.L. Removal of aqueous phenol using immobilized enzymes in a bench scale and pilot scale three-phase fluidized bed reactor // Bioprocess. Biosyst. Eng. – 2005. – V. 21, № 4. – P. 185-191.
25. Riley P.A. Molecules in focus: Melanin // Int. J. Biochem. Cell. Biol. – 1997. – V. 29. – P. 1235-1239.
26. Bell A.A., Wheeler M.H. Biosynthesis and functions of fungal melanins // Ann. Rev. Phytopathol. – 1986. – V. 24. – P. 411-451.
27. Strattford M.R., Ramsden C.A., Riley P.A. Mechanistic studies of the inactivation of tyrosinase by resorcinol // Bioorg. Med. Chem. - 2013. - V. 21. - P. 1166-1173.
28. Chang T.S. An updated review of tyrosinase inhibitors // Int. J. Mol. Sci. - 2009. V. 10. - P. 2440-2475.
29. Liang C.P., Chang C.H., Liang C.C., et al. In vitro antioxidant activities, free radical scavening capacity, and tyrosinase inhibitory of flavonoid compounds and ferulic acid from Spiranthes sinensis // Molecules. - 2014. - V. 19. - P. 4681-4694.
30. Harborne, J.B.; Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry 2000, 55, 481-504.
31. Kubo, I.; Kinst-Hori, I. Flavonols from saffron flower: tyrosinase inhibitory activity and inhibition mechanism. J. Agric. Food Chem. 1999, 47, 4121-4125.
32. Kubo, I.; Kinst-Hori, I.; Chaudhuri, S.K.; Kubo, Y.; Sánchez, Y.; Ogura, T. Flavonols from Heterotheca inuloides: tyrosinase inhibitory activity and structural criteria. Bioorg. Med. Chem. 2000, 8, 1749-1755.
33. Xie, L.P.; Chen, Q.X.; Huang, H.; Wang, H.Z.; Zhang, R.Q. Inhibitory effects of some flavonoids on the activity of mushroom tyrosinase. Biochemistry 2003, 68, 487-491.
34. Matsuda, H.; Higashino, M.; Chen, W.; Tosa, H.; Iinuma, M.; Kubo, M. Studies of cuticle drugs from natural sources. III. Inhibitory effect of Myrica rubra on melanin biosynthesis. Biol. Pharm. Bull. 1995, 18, 1148-1150.
35. Lee, S.H.; Choi, S.Y.; Kim, H.; Hwang, J.S.; Lee, B.G.; Gao, J.J.; Kim, S.Y. Mulberroside F isolated from the leaves of Morus alba inhibits melanin biosynthesis. Biol. Pharm. Bull. 2002, 25, 1045-1048
36. Ryu, Y.B.; Ha, T.J.; Curtis-Long, M.J.; Ryu, H.W.; Gal, S.W.; Park, K.H. Inhibitory effects on mushroom tyrosinase by flavones from the stem barks of Morus lhou (S.) Koidz. J. Enzyme Inhib. Med. Chem. 2008, 23, 922-930.
37. Shin, N.H.; Ryu, S.Y.; Choi, E.J.; Kang, S.H.; Chang, I.M.; Min, K.R.; Kim, Y. Oxyresveratrol as the potent inhibitor on dopa oxidase activity of mushroom tyrosinase. Biochem. Biophys. Res. Commun. 1998, 243, 801-803.
38. Jeong, S.H.; Ryu, Y.B.; Curtis-Long, M.J.; Ryu, H.W.; Baek, Y.S.; Kang, J.E.; Lee, W.S.; Park, K.H. Tyrosinase Inhibitory Polyphenols from Roots of Morus lhou. J. Agric. Food Chem. 2009, 57, 1195-1203.
39. Arung, E.T.; Shimizu, K.; Kondo, R. Inhibitory effect of artocarpanone from Artocarpus heterophyllus on melanin biosynthesis. Biol. Pharm. Bull. 2006, 29, 1966-1969.
40. Zheng, Z.P.; Cheng, K.W.; To, J.T.; Li, H.; Wang, M. Isolation of tyrosinase inhibitors from Artocarpus heterophyllus and use of its extract as antibrowning agent. Mol. Nutr. Food Res. 2008, 52, 1530-1538.
41. Miyazawa, M.; Tamura, N. Inhibitory compound of tyrosinase activity from the sprout of Polygonum hydropiper L. (Benitade). Biol. Pharm. Bull. 2007, 30, 595-597.
42. An, S.M.; Kim, H.J.; Kim, J.E.; Boo, Y.C. Flavonoids, taxifolin and luteolin attenuate cellular melanogenesis despite increasing tyrosinase protein levels. Phytother. Res. 2008, 22, 1200-1207.
43. Yokota, T.; Nishio, H.; Kubota, Y.; Mizoguchi, M. The inhibitory effect of glabridin from licorice extracts on melanogenesis and inflammation. Pigment Cell Res. 1998, 11, 355-361.
44. Nerya, O.; Vaya, J.; Musa, R.; Izrael, S.; Ben-Arie, R.; Tamir, S. Glabrene and isoliquiritigenin as tyrosinase inhibitors from Licorice roots. J. Agric. Food Chem. 2003, 51, 1201-1207.
45. Kim, H.J.; Seo, S.H.; Lee, B.G.; Lee, Y.S. Identification of tyrosinase inhibitors from Glycyrrhiza uralensis. Planta Med. 2005, 71, 785-787.
46. Kim, J.H.; Baek, S.H.; Kim, D.H.; Choi, T.Y.; Yoon, T.J.; Hwang, J.S.; Kim, M.R.; Kwon, H.J.; Lee, C.H. Downregulation of melanin synthesis by haginin A and its application to in vivo lightening model. J. Invest. Dermatol. 2008, 128, 1227-1235.
47. Baek, S.; Kim, J.; Kim, D.; Lee, C.; Kim, J.; Chung, D.K.; Lee, C. Inhibitory effect of dalbergioidin isolated from the trunk of Lespedeza cyrtobotrya on melanin biosynthesis. J. Microbiol. Biotechnol. 2008, 18, 874-879
48. Fu, B.; Li, H.; Wang, X.; Lee, F.S.; Cui, S. Isolation and identification of flavonoids in licorice and a study of their inhibitory effects on tyrosinase. J. Agric. Food Chem. 2005, 53, 7408-7414.
49. Kim, S.J.; Son, K.H.; Chang, H.W.; Kang, S.S.; Kim, H.P. Tyrosinase inhibitory prenylated flavonoids from Sophora flavescens. Biol. Pharm. Bull. 2003, 26, 1348-1350.
50. Hyun, S.K.; Lee, W.H.; Jeong, da.M.; Kim, Y.; Choi, J.S. Inhibitory effect of kurarinol, kuraridinol, and trifolirhizin from Sophora flavescens on tyrosinase and melanin synthesis. Biol. Pharm. Bull. 2008, 31, 154-158.
51. Zhang, X.; Hu, X.; Hou, A.; Wang. H. Inhibitory effect of 2,4,2',4'-tetrahydroxy-3-(3-methyl-2- butenyl)-chalcone on tyrosinase activity and melanin biosynthesis. Biol. Pharm. Bull. 2009, 32, 86-90.
52. Shimizu, K.; Kondo, R.; Sakai, K. Inhibition of tyrosinase by flavonoids, stilbenes and related 4- substituted resorcinols: structure-activity investigations. Planta Med. 2000, 66, 11-15.
53. Chen, Q.X.; Ke, L.N.; Song, K.K.; Huang, H.; Liu, X.D. Inhibitory effects of hexylresorcinol and dodecylresorcinol on mushroom (Agaricus bisporus) tyrosinase. Protein J. 2004, 23, 135-141.
54. Nerya, O.; Musa, R.; Khatib, S.; Tamir, S.; Vaya, J. Chalcones as potent tyrosinase inhibitors: the effect of hydroxyl positions and numbers. Phytochemistry 2004, 65, 1389-1395.
55. Khatib, S.; Nerya, O.; Musa, R.; Shmuel, M.; Tamir, S.; Vaya, J. Chalcones as potent tyrosinase inhibitors: the importance of a 2,4-substituted resorcinol moiety. Bioorg. Med. Chem. 2005, 13, 433-441.
56. Jun, N.; Hong, G.; Jun, K. Synthesis and evalution of 2',4',6'-trihydroxychalcones as a new class of tyrosine inhibitors. Bioorg. Med. Chem. 2007, 15, 2396-2402.
57. Kim, D.; Park, J.; Kim, J.; Han, C.; Yoon, J.; Kim, N.; Seo, J.; Lee, C. Flavonoids as mushroom tyrosinase inhibitors: A fluorescence quenching study. J. Agric. Food Chem. 2006, 54, 935-941.
58. Kim, Y.M.; Yun, J.; Lee, C.K.; Lee, H.; Min, K.R.; Kim, Y. Oxyresveratrol and hydroxystilbene compounds. Inhibitory effect on tyrosinase and mechanism of action. J. Biol. Chem. 2002, 277, 16340-16344
59. Kuniyoshi, S.; Seiji, Y.; Ryuichiro, K. A new stilbene with tyrosinase inhibitory activity form Chlorophora excelsa. Chem. Pharm. Bull. 2003, 51, 318-319.
60. Jones, K.; Hughes, J.; Hong, M.; Jia, Q.; Orndorff, S. Modulation of melanogenesis by aloesin: a competitive inhibitor of tyrosinase. Pigment Cell Res. 2002, 15, 335-340.
61. Choi, S.; Lee, S.K.; Kim, J.E.; Chung, M.H.; Park, Y.I. Aloesin inhibits hyperpigmentation induced by UV radiation. Clin.Exp. Dermatol. 2002, 27, 513-515.
62. Lee, H.S. Tyrosinase inhibitors of Pulsatilla cernua root-derived materials. J. Agric. Food Chem. 2002, 50, 1400-1403.
63. Jiménez, M.; Chazarra, S.; Escribano, J.; Cabanes, J.; García-Carmona, F. Competitive inhibition of mushroom tyrosinase by 4-substituted benzaldehydes. J. Agric. Food. Chem. 2001, 49, 4060-4063.
64. Kubo, I.; Kinst-Hori, I. 2-Hydroxy-4-methoxy benzaldehyde: a potent tyrosinase inhibitor from African medicinal plants. Planta Med. 1999, 65, 19-22.
65. Kubo, I.; Kinst-Hori, I. Tyrosinase inhibitors from cumin. J. Agric. Food Chem. 1998, 46, 5338-5341.
66. Kubo, I.; Kinst-Hori, I. Tyrosinase inhibitory activity of the olive oil flavor compounds. J. Agric. Food Chem. 1999, 47, 4574-4578.
67. Conrad, J.S.; Dawso, S.R.; Hubbard, E.R.; Meyers, T.E.; Strothkamp, K.G. Inhibitor binding to the binuclear active site of tyrosinase: temperature, pH and solvent deuterium isotope effects. Biochemistry 1994, 33, 5739-5744.
68. Kang, H.S.; Choi, J.H.; Cho, W.K.; Park, J.C.; Choi, J.S. A sphingolipid and tyrosinase inhibitors from the fruiting body of Phellinus linteus. Arch. Pharm. Res. 2004, 27, 742-750.
69. Jeon, H.J.; Noda, M.; Maruyama, M.; Matoba, Y.; Kumagai, T.; Suqivama, M. Identification and kinetic study of tyrosinase inhibitors found in sake lees. J. Agric. Food Chem. 2006, 54, 9827-9833.
70. Maqid, A.A.; Voutquenne-Nazabadioko, L.; Bontemps, G.; Litaudon, M.; Lavaud, C. Tyrosinase inhibitors and sesquiterpene diglycosides from Guioa villosa. Planta Med. 2008, 74, 55-60.
71. Sabudak, T.; Khan, M.T.; Choudhary, M.I.; Oksuz, S. Potent tyrosinase inhibitors from Trifolium balansae. Nat. Prod. Res. 2006, 20, 665-670.
72. Khan, M.T.; Khan, S.B.; Ather, A. Tyrosinase inhibitory cycloartane type triterpenoids from the methanol extract of the whole plant of Amberboa ramosa Jafri and their structure-activity relationship. Bioorg. Med. Chem. 2006, 14, 938-943.
73. Leu, Y.L.; Hwang, T.L.; Hu, J.W.; Fang, J.Y. Anthraquinones from Polygonum cuspidatum as tyrosinase inhibitors for dermal use. Phytother. Res. 2008, 22, 552-556.
74. Devkota, K.P.; Khan, M.T.; Ranjit, R.; Lannang, A.M.; Samreen; Choudhary, M.I. Tyrosinase inhibitory and antileishmanial constituents from the rhizomes of Paris polyphylla. Nat. Prod. Res. 2007, 21, 321-327.
75. Azhar-Ul-Haq; Malik, A.; Khan, M.T.; Anwar-Ul-Haq; Khan, S.B.; Ahmad, A.; Choudhary, M.I. Tyrosinase inhibitory lignans from the methanol extract of the roots of Vitex negundo Linn. and their structure-activity relationship. Phytomedicine 2006, 13, 255-260.
76. Kang, H.S.; Kim, H.R.; Byun, D.S.; Son, B.W.; Nam, T.J.; Choi, J.S. Tyrosinase inhibitors isolated from the edible brown alga Ecklonia stolonifera. Arch. Pham. Res. 2004, 27, 1226-1232.
77. Gerdemann, C.; Eicken, C.; Krebs, B. The crystal structure of catechol oxidase: new insight into the function of type-3 copper proteins. Acc. Chem. Res. 2002, 35, 183-191.
78. Shiino, M.; Watanabe, Y.; Umezawa, K. Synthesis of tyrosinase inhibitory activity of novel Nhydroxybenzyl-N-nitrosohydroxylamines. Bioorg. Chem. 2003, 31, 129–135.
79. Koketsu, M.; Choi, S.Y.; Ishihara, H.; Lim, B.O.; Kim, H.; Kim, S.Y. Inhibitory effects of 1,3- selenazol-4-one derivatives on mushroom tyrosinase. Chem. Pharm. Bull. 2002, 50, 1594-1596.
80. Ha, S.K.; Koketsu, M.; Lee, K.; Choi, S.Y.; Park, J.H.; Ishihara, H.; Kim, S.Y. Inhibition of tyrosinase activity by N,N-unsubstituted selenourea derivatives. Biol. Pharm. Bull. 2005, 28, 838-840.
81. Ahn, S.J.; Koketsu, M.; Ishihara, H.; Lee, S.M.; Ha, S.K.; Lee, K.H.; Kang, T.H.; Kima, S.Y. Regulation of melanin synthesis by selenium-containing carbohydrates. Chem. Pharm. Bull. 2006, 54, 281-286.
82. Tsou, C.L. Kinetics of substrate reaction during irreversible modification of enzyme activity. Adv. Enzymol. Relat. Areas. Mol. Biol. 1988, 61, 381-436.
83. Espín, J.C.; Wichers, H.J. Effect of captopril on mushroom tyrosinase activity in vitro. Biochim. Biophys. Acta. 2001, 1544, 289-300
84. Haghbeen, K.; Saboury, A.A.; Karbassi, F. Substrate share in the suicide inactivation of mushroom tyrosinase. Biochim. Biophys. Acta 2004, 1675, 139-146.
85. Chang, T. S. Two potent suicide substrates of mushroom tyrosinase: 7, 8, 4'-trihydroxyisoflavone and 5, 7, 8,4'-tetrahydroxyisoflavone. J. Agric. Food Chem. 2007, 55, 2010-2015.
86. Chang, T.S. 8-Hydroxydaidzein is unstable in alkaline solutions. J. Cosmet. Sci. In press.
87. Пат. 2 956929 США, МКИ 195-68 / E. M. Cohen, L.L. Lerner. Tyrosinase concentrate and extractant and method for making the same – Заявл. 24.04.1958. Опубл.18.10.1960.
88. Singleton V. L., Othofer R., Lamnela-Raventos R. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent // Meth. Enzymol. - 1999. - V. 299. - P. 152-178.
89. Hartree E.F. Determination of protein: a modification of the Lowry method, that gives a linear photometric response // Anal. Biochem. – 1972. – V. 48, № 1. – P. 422-427.
90. Ikehata K. Color and toxicity removal following tyrosinase – catalyzed oxidation of phenols / K. Ikehata, J.A. Nicell // Biotechnol. Prog. – 2000. – V. 16, № 4. – P. 533-540.
91. Leeuwen J. V., Wichers H.J. Tyrosinase activity and isoform composition in separate tissues during development of Agaricus bisporus fruit bodies // Mycological Research. - 1999. - V. 103. - P. 413-418.
92. Келети Т. Основы ферментативной кинетики. - М.: Мир, 1990. - 348 с.
93. Jiménez M., Chazarra S., Escribano J. et al. Competitive Inhibition of Mushroom tyrosinase by 4-substituted benzaldehydes // J. Agric. Food Chem. - 2001. - V. 49. - P. 4060–4063.
94. Wada S. Removal of phenols and aromatic amines from wastewater by a combination treatment with tyrosinase and a coagulant / S. Wada, H. Ichikawa, K. Tatsumi // Biotechnol. Bioeng. – 1993. – V. 45. – P. 304-309.
95. Романовська І.І. Ферментативні методи елімінації фенольних полютантів / І.І. Романовська, О.В. Осійчук, Ю.А. Шестеренко, О.В. Севастьянов // Мікробіологія i біотехнологія. – 2008. – № 1(2). – С. 72-78.
96. Solomon E.I. Electronic structure contributions to function in bioinorganic chemistry / E.I.Solomon, M.D. Lowery // Science. – 1993. – V. 259. – P. 1575–1581.
97. Жидецький В.Ц., Джигирей В.С., Сторожук В.М. Практикум із охорони праці: Навчальний посібник. - Львів: Афіша, 2000. - 352 с.
Купить эту работу vs Заказать новую | ||
---|---|---|
0 раз | Куплено | Выполняется индивидуально |
Не менее 40%
Исполнитель, загружая работу в «Банк готовых работ» подтверждает, что
уровень оригинальности
работы составляет не менее 40%
|
Уникальность | Выполняется индивидуально |
Сразу в личном кабинете | Доступность | Срок 1—6 дней |
8000 ₽ | Цена | от 3000 ₽ |
Не подошла эта работа?
В нашей базе 55803 Дипломной работы — поможем найти подходящую