Автор24

Информация о работе

Подробнее о работе

Страница работы

Алгоритмы оценки тренда при анализе временных рядов

  • 77 страниц
  • 2016 год
  • 392 просмотра
  • 2 покупки
Автор работы

EkaterinaKonstantinovna

Большой опыт в написании работ, очень давно работаю на этом ресурсе, выполнила более 15000 заказов

2240 ₽

Работа будет доступна в твоём личном кабинете после покупки

Гарантия сервиса Автор24

Уникальность не ниже 50%

Фрагменты работ

Прогнозирование будущих значений временных рядов на основе анализа предыдущих значений необходимо для управления деятельностью во многих отраслях хозяйства: стратегическое планирование структуры, видов и объемов различных работ на основе долгосрочных трендов, тактическое управление процессами с учетом сезонности и цикличности, оперативное управление при знании диапазонов изменений текущих значений параметров процесса. Эффективность руководства компаниями подразумевает накопление, обработку и анализ исторических значений параметров деятельности в базах данных с целью распознавания тенденций, их типов и характера влияния на прогнозируемый процесс[1].
Однако большое количество накопленных неструктурированных данных не приводит автоматически к повышению эффективности и качества их использования, поскольку, значительно увеличивая объемы входной информации для задачи прогнозирования, затрудняет анализ механизмов их формирования и горизонт действия. Кроме того, современные стандарты экономического и технического управления накладывают все более высокие требования к уровню точности моделей и методов распознавания типа тренда. С другой стороны, непрерывное развитие аппаратных и программных средств обеспечивает все более мощную вычислительную среду, в которой становится возможной работа и более сложных и тонких алгоритмов и методов прогнозирования.
Следовательно, актуальность совершенствования методов анализа и оценки трендов временных рядов обусловлена, с одной стороны, постоянно растущими требованиями к уровню и качеству прогнозирования, а с другой – также постоянно растущими возможностями аппаратных и программных вычислительных средств: задачи прогнозирования временных рядов усложняются одновременно с расширением возможностей информационных технологий.
В основе прогнозирования временных рядов лежат модели и алгоритмы прогнозирования, позволяющие адекватно отражать механизмы формирования и развития процесса, обусловливаемые теми или иными тенденциями различного горизонта действия. В соответствии с разнообразием исследуемых процессов и задач прогнозирования их трендов к настоящему времени разработаны многие модели прогнозирования: модели экспоненциального сглаживания, регрессионные и авторегрессионные модели, модели на базе цепей Маркова, нейросетевые модели, классификационные модели и другие.
Авторегрессионные и нейросетевые модели относятся к наиболее широко используемым вследствие тех возможностей анализа, которые они предоставляют [2]. Существенным недостатком класса авторегрессионных моделей прогнозирования является большое количество параметров, определение которых требует значительных ресурсов и неоднозначно.
Целью работы является изучение методов и алгоритмов распознавания, анализа и оценки параметров тенденций и трендов временных рядов и их программная реализация в среде MatLab.
Для достижения этой цели были поставлены и решены следующие задачи.
1. Провести анализ методов, моделей и алгоритмов распознавания, анализа и оценки параметров тенденций и трендов временных рядов для выявления достоинств и недостатков моделей каждого класса. Определить наиболее эффективные модели прогнозирования временных рядов, проанализировать их основные недостатки, определить подходы, позволяющие устранить недостатки авторегрессионных моделей.
2. Разработать модель прогнозирования временных рядов методами нейросетей, устраняющую указанный недостаток авторегрессионного класса моделей.
3. Реализовать алгоритмы нейросетевого прогнозирования в среде MatLab.
4. Оценить эффективность нейросетевой модели для решения задач прогнозирования временных рядов различной природы с целью распознавания, анализа и оценки параметров тенденций и трендов.
Методы исследования. Для решения поставленных задач в настоящей работе необходимо использовать методы математического моделирования и анализа временных рядов.
Объектом исследования являются методы анализа, оценки и прогнозирования тенденций и трендов временных рядов.
Предметом – эффективность различных алгоритмов распознавания, анализа и оценки параметров тенденций и трендов временных рядов.
Программное обеспечение разработано в среде MatLab.
Исходные данные представлены в виде временных рядов, полученных из следующих открытых источников:
1) метеорологические данные ФГБУ «ИГКЭ Росгидромета и РАН» (http://meteoinfo.ru/news/1-2009-10-01-09-03-06/8796-12032014-2015 ) (Россия - данные на станциях). СП - crutem4nh.txt) и данные Университета Восточной Англии (Земной шар - массив hadcrut4gl.txt;
2) функционирование энергетического рынка США и, в частности, потребления электроэнергии. Для этой цели были использованы фактические исторические данные совокупного годового потребления электроэнергии (Electricity Consumption) всеми секторами потребителей, размещенные в открытых источниках, главным образом на следующих интернет-ресурсах правительственных организаций США:
http://www.eia.gov/opendata/qb.cfm?sdidSTEO.ESTXPUS.A
http://www.eia.gov/todayinenergy/detail.cfm?id25672
http://www.eia.gov/forecasts/steo/data.cfm?typetables
http://www.eia.gov/forecasts/steo/pdf/steo_full.pdf


1. ОБЗОР МОДЕЛЕЙ ПРОГНОЗИРОВАНИЯ ВРЕМЕННЫХ РЯДОВ 7
1.1. Авторегрессионные модели 8
1.2. Модели экспоненциального сглаживания 9
1.3. Модели на базе цепей Маркова 11
1.4. Нейросетевые модели 14
1.5. Сравнение моделей прогнозирования 18
Выводы по 1-ой главе 20
2. МЕТОДЫ КОМПЬЮТЕРНЫХ НЕЙРОННЫХ СЕТЕЙ КАК МЕТОДОВ ОЦЕНКИ ТРЕНДА 21
2.1. Роль искусственных нейронных сетей в прогнозировании 21
2.2. Основные методы обучения нейронной сети 28
2.3. Обучение с учителем: алгоритм обратного распространения 28
2.4. Обучение без учителя: самоорганизующиеся сети 29
3. ПРОГРАММНАЯ РЕАЛИЗАЦИЯ И ОЦЕНКА ЭФФЕКТИВНОСТИ МОДЕЛИ КОМПЬЮТЕРНЫХ НЕЙРОННЫХ СЕТЕЙ ЗАДАЧАХ ПРОГНОЗИРОВАНИЯ ВРЕМЕННЫХ РЯДОВ 36
3.1. Алгоритм оценки тренда для текущего энергопотребления (на примере выборки Electricity Consumption США) 36
3.2. Особенности программной реализации моделей нейронных сетей в пакете MATLAB 45
3.3. Моделирование сетей для прогнозирования совокупного годового энергопотребления 47
3.4. Моделирование сетей для прогнозирования финансовых временных рядов (на примере выборки фондового индекса Dow Jones Industrial Average) 52
3.5. Прогнозирование временного «гринвичского» ряда уровня солнечных пятен 59
IV. ОБЕСПЕЧЕНИЕ БЕЗОПАСНОСТИ ЖИЗНЕДЕЯТЕЛЬНОСТИ. 66
4.1. Обеспечение безопасности труда при работе на ПЭВМ 66
4.2. Пожарная безопасность 71
ЗАКЛЮЧЕНИЕ 74
ЛИТЕРАТУРА 75


Задача анализа временных рядов актуальна и включает в себя выделение его основных компонент: трендовой, сезонных, циклических и нерегулярных (шумовых) компонентов данных. Одними из наиболее используемых классов алгоритмов и моделей выделения трендовой составляющей являются классы авторегрессионных моделей и моделей на основе искусственных нейронных сетей.
Установлено, что основным недостатком данного класса является большое число свободных параметров, требующих определения. Определено перспективное направление развития моделей прогнозирования, позволяющее устранить указанный недостаток.
Изучены возможности прогнозирования временных рядов, идентификации модели и построения доверительного интервала прогнозных значений с помощью средств пакета MATLAB.
Выполнена программная реализация разработанных алгоритмов средствами математического пакета MATLAB для прогнозирования реальных данных: выборки исторических данных энергопотребления, финансовых временных рядов на примере выборки рядов для фондового индекса Dow Jones Industrial Average и «гринвичского» временного ряда уровня солнечных пятен.

1. Бокс Дж., Дженкинс Г.М. Анализ временных рядов, прогноз и управление. М.: Мир, 1974. 406 с.
2. Gheyas I.A., Smith L.S. A Neural Network Approach to Time Series Forecasting // Proceedings of the World Congress on Engineering, London, 2009, Vol 2 [электронный ресурс]. P. 1292 – 1296. URL: www.iaeng.org /publication/WCE2009/WCE2009_pp1292-1296.pdf
3. Morariu N., Iancu E., Vlad S. A neural network model for time series forecasting // Romanian Journal of Economic Forecasting. 2009, No. 4. P. 213 – 223.
4. Mazengia D.H. Forecasting Spot Electricity Market Prices Using Time Series Models: Thesis for the degree of Master of Science in Electric Power Engineering. Gothenburg, Chalmers University of Technology, 2008. 89 p.
5. Нормативные системы в прогнозировании развития предпринимательского сектора экономики / Л.И. Муратова [и др.] // Управление экономическими системами [электронный ресурс]. 2009, №20. URL: http://uecs.mcnip.ru/modules.php?name=News&file=print&sid=145
6. Parzen E. Long memory of statistical time series modeling // NBER-NSF Time Series Conference, USA, Davis, 2004 [электронный ресурс]. 10 p. URL: http://www.stat.tamu.edu/~eparzen/Long%20Memory%20of%20Statistical %20Time%20Series%20Modeling.pdf
7. Ф. Уоссермен “Нейрокомпьютерная техника”, М.: Мир, 1992. – 126 с.
8. Панфилов П. “Введение в нейронные сети” – статьи, журнал «Современный трейдинг» №№ 1, 2, 3 2001г. – СПб.: Изд-во “Альпина”
9. Найман Э.Л. “Малая энциклопедия трейдера”. – К., “ВИРА-Р”, Изд-во “Альфа Капитал”, 1999. – 285 c.
10. А.Эрлих “Технический анализ товарных и финансовых рынков”. Изд-во “Инфра” – М., 1996. – 205 с.
11. Князевский Б.А. и др. Охрана труда в электроустановках. – М.: Энергоатомиздат, 1983. – 185 с.
12. Леоненков А. Нечеткое моделирование в среде MATLAB и fuzzyTECH. СПб: БХВ-Петербург, 2005. 736 с.
13. Armstrong J.S. Forecasting for Marketing // Quantitative Methods in Marketing. London: International Thompson Business Press, 1999. P. 92 – 119.
14. Семенов В.В. Математическое моделирование динамики транспортных потоков мегаполиса. М.: ИПМ им. М.В.Келдыша РАН, 2004. 44 с.
15. «Применение ИНС для создания экспертной системы диагностирования технологического оборудования» А.В. Семенченко Московский государственный строительный университет (МГСУ)
16. http://leonarus.com/2008/09/08/tipichnye-primery-primeneniya-nejronnyx-setej-v-menedzhmente/
17. Галушкин А.И. Применения нейрокомпьютеров в финансовой деятельности
18. Владимир Белов «О перспективах искусственного интеллекта»
19. «Нейронные сети Хопфилда» С.Короткий
20. Бэстенс, Д.-Э., Ван Ден Берг, В.-М., Вуд, Д. (1997). Нейронные сети и финансовые рынки. Принятие решений в торговых операциях. ТВП Научное издательство.
21. Чучуева И. А., Павлов Ю. Н. Сезонно-регрессионная модель прогнозирования в решении задачи прогнозирования цен РСВ (рынок на сутки вперед) // Энерго-Info. 2009. №4. С. 46 – 49.
22. 58. BI EnergoPrice: Прогнозирование цен на электроэнергию.// Общество с ограниченной ответственностью «BIGroupLabs» [электронный ресурс]. URL:
23. http://www.bi-grouplabs.ru/Rech/electricity/BI_EnergoPrice.html
24. Берзон Н.И. Фондовый рынок: Учеб. Пособие для высш. учебн. зав. экон. профиля/ Гос. унив. – Высшая Школа Экономики. Высшая Школа менеджмента./ Н.И.Берзон, А.Ю. Аршавский, Е.А.Буянова, А.С. Красильщиков. Под ред. Н.И.Берзона – 4-е изд., перераб. и доп. – М.: ВИТА-ПРЕСС, 2009. – 624 с.: ил.
25. Быкадоров Р.В., Воронин С.Ю. Вероятностные методы расчета технологического процесса ткачества. Иваново, ИГТА, 2006. – 108 с.
26. Вилленброк Х. Тайны принятия решений// GEO, июль 2009, с. 70-87.
27. Воробьев Н.Н. Теория игр для экономистов-кибернетиков – М.: Наука, Главная редакция физико-математической литературы, 1985. – 272 с.
28. Вороновский Г. К., Махотило К. В., Петрашев С. Н., Сергеев С. А. Генетические алгоритмы, искусственные нейронные сети и проблемы виртуальной реальности. — Харьков: Основа, 1997. — 112 с.
29. Евстигнеев В.Р. Прогнозирование доходности на рынке акций. – М.: Маросейка, 2009. – 192 с.

Форма заказа новой работы

Не подошла эта работа?

Закажи новую работу, сделанную по твоим требованиям

Оставляя свои контактные данные и нажимая «Заказать Дипломную работу», я соглашаюсь пройти процедуру регистрации на Платформе, принимаю условия Пользовательского соглашения и Политики конфиденциальности в целях заключения соглашения.

Фрагменты работ

Прогнозирование будущих значений временных рядов на основе анализа предыдущих значений необходимо для управления деятельностью во многих отраслях хозяйства: стратегическое планирование структуры, видов и объемов различных работ на основе долгосрочных трендов, тактическое управление процессами с учетом сезонности и цикличности, оперативное управление при знании диапазонов изменений текущих значений параметров процесса. Эффективность руководства компаниями подразумевает накопление, обработку и анализ исторических значений параметров деятельности в базах данных с целью распознавания тенденций, их типов и характера влияния на прогнозируемый процесс[1].
Однако большое количество накопленных неструктурированных данных не приводит автоматически к повышению эффективности и качества их использования, поскольку, значительно увеличивая объемы входной информации для задачи прогнозирования, затрудняет анализ механизмов их формирования и горизонт действия. Кроме того, современные стандарты экономического и технического управления накладывают все более высокие требования к уровню точности моделей и методов распознавания типа тренда. С другой стороны, непрерывное развитие аппаратных и программных средств обеспечивает все более мощную вычислительную среду, в которой становится возможной работа и более сложных и тонких алгоритмов и методов прогнозирования.
Следовательно, актуальность совершенствования методов анализа и оценки трендов временных рядов обусловлена, с одной стороны, постоянно растущими требованиями к уровню и качеству прогнозирования, а с другой – также постоянно растущими возможностями аппаратных и программных вычислительных средств: задачи прогнозирования временных рядов усложняются одновременно с расширением возможностей информационных технологий.
В основе прогнозирования временных рядов лежат модели и алгоритмы прогнозирования, позволяющие адекватно отражать механизмы формирования и развития процесса, обусловливаемые теми или иными тенденциями различного горизонта действия. В соответствии с разнообразием исследуемых процессов и задач прогнозирования их трендов к настоящему времени разработаны многие модели прогнозирования: модели экспоненциального сглаживания, регрессионные и авторегрессионные модели, модели на базе цепей Маркова, нейросетевые модели, классификационные модели и другие.
Авторегрессионные и нейросетевые модели относятся к наиболее широко используемым вследствие тех возможностей анализа, которые они предоставляют [2]. Существенным недостатком класса авторегрессионных моделей прогнозирования является большое количество параметров, определение которых требует значительных ресурсов и неоднозначно.
Целью работы является изучение методов и алгоритмов распознавания, анализа и оценки параметров тенденций и трендов временных рядов и их программная реализация в среде MatLab.
Для достижения этой цели были поставлены и решены следующие задачи.
1. Провести анализ методов, моделей и алгоритмов распознавания, анализа и оценки параметров тенденций и трендов временных рядов для выявления достоинств и недостатков моделей каждого класса. Определить наиболее эффективные модели прогнозирования временных рядов, проанализировать их основные недостатки, определить подходы, позволяющие устранить недостатки авторегрессионных моделей.
2. Разработать модель прогнозирования временных рядов методами нейросетей, устраняющую указанный недостаток авторегрессионного класса моделей.
3. Реализовать алгоритмы нейросетевого прогнозирования в среде MatLab.
4. Оценить эффективность нейросетевой модели для решения задач прогнозирования временных рядов различной природы с целью распознавания, анализа и оценки параметров тенденций и трендов.
Методы исследования. Для решения поставленных задач в настоящей работе необходимо использовать методы математического моделирования и анализа временных рядов.
Объектом исследования являются методы анализа, оценки и прогнозирования тенденций и трендов временных рядов.
Предметом – эффективность различных алгоритмов распознавания, анализа и оценки параметров тенденций и трендов временных рядов.
Программное обеспечение разработано в среде MatLab.
Исходные данные представлены в виде временных рядов, полученных из следующих открытых источников:
1) метеорологические данные ФГБУ «ИГКЭ Росгидромета и РАН» (http://meteoinfo.ru/news/1-2009-10-01-09-03-06/8796-12032014-2015 ) (Россия - данные на станциях). СП - crutem4nh.txt) и данные Университета Восточной Англии (Земной шар - массив hadcrut4gl.txt;
2) функционирование энергетического рынка США и, в частности, потребления электроэнергии. Для этой цели были использованы фактические исторические данные совокупного годового потребления электроэнергии (Electricity Consumption) всеми секторами потребителей, размещенные в открытых источниках, главным образом на следующих интернет-ресурсах правительственных организаций США:
http://www.eia.gov/opendata/qb.cfm?sdidSTEO.ESTXPUS.A
http://www.eia.gov/todayinenergy/detail.cfm?id25672
http://www.eia.gov/forecasts/steo/data.cfm?typetables
http://www.eia.gov/forecasts/steo/pdf/steo_full.pdf


1. ОБЗОР МОДЕЛЕЙ ПРОГНОЗИРОВАНИЯ ВРЕМЕННЫХ РЯДОВ 7
1.1. Авторегрессионные модели 8
1.2. Модели экспоненциального сглаживания 9
1.3. Модели на базе цепей Маркова 11
1.4. Нейросетевые модели 14
1.5. Сравнение моделей прогнозирования 18
Выводы по 1-ой главе 20
2. МЕТОДЫ КОМПЬЮТЕРНЫХ НЕЙРОННЫХ СЕТЕЙ КАК МЕТОДОВ ОЦЕНКИ ТРЕНДА 21
2.1. Роль искусственных нейронных сетей в прогнозировании 21
2.2. Основные методы обучения нейронной сети 28
2.3. Обучение с учителем: алгоритм обратного распространения 28
2.4. Обучение без учителя: самоорганизующиеся сети 29
3. ПРОГРАММНАЯ РЕАЛИЗАЦИЯ И ОЦЕНКА ЭФФЕКТИВНОСТИ МОДЕЛИ КОМПЬЮТЕРНЫХ НЕЙРОННЫХ СЕТЕЙ ЗАДАЧАХ ПРОГНОЗИРОВАНИЯ ВРЕМЕННЫХ РЯДОВ 36
3.1. Алгоритм оценки тренда для текущего энергопотребления (на примере выборки Electricity Consumption США) 36
3.2. Особенности программной реализации моделей нейронных сетей в пакете MATLAB 45
3.3. Моделирование сетей для прогнозирования совокупного годового энергопотребления 47
3.4. Моделирование сетей для прогнозирования финансовых временных рядов (на примере выборки фондового индекса Dow Jones Industrial Average) 52
3.5. Прогнозирование временного «гринвичского» ряда уровня солнечных пятен 59
IV. ОБЕСПЕЧЕНИЕ БЕЗОПАСНОСТИ ЖИЗНЕДЕЯТЕЛЬНОСТИ. 66
4.1. Обеспечение безопасности труда при работе на ПЭВМ 66
4.2. Пожарная безопасность 71
ЗАКЛЮЧЕНИЕ 74
ЛИТЕРАТУРА 75


Задача анализа временных рядов актуальна и включает в себя выделение его основных компонент: трендовой, сезонных, циклических и нерегулярных (шумовых) компонентов данных. Одними из наиболее используемых классов алгоритмов и моделей выделения трендовой составляющей являются классы авторегрессионных моделей и моделей на основе искусственных нейронных сетей.
Установлено, что основным недостатком данного класса является большое число свободных параметров, требующих определения. Определено перспективное направление развития моделей прогнозирования, позволяющее устранить указанный недостаток.
Изучены возможности прогнозирования временных рядов, идентификации модели и построения доверительного интервала прогнозных значений с помощью средств пакета MATLAB.
Выполнена программная реализация разработанных алгоритмов средствами математического пакета MATLAB для прогнозирования реальных данных: выборки исторических данных энергопотребления, финансовых временных рядов на примере выборки рядов для фондового индекса Dow Jones Industrial Average и «гринвичского» временного ряда уровня солнечных пятен.

1. Бокс Дж., Дженкинс Г.М. Анализ временных рядов, прогноз и управление. М.: Мир, 1974. 406 с.
2. Gheyas I.A., Smith L.S. A Neural Network Approach to Time Series Forecasting // Proceedings of the World Congress on Engineering, London, 2009, Vol 2 [электронный ресурс]. P. 1292 – 1296. URL: www.iaeng.org /publication/WCE2009/WCE2009_pp1292-1296.pdf
3. Morariu N., Iancu E., Vlad S. A neural network model for time series forecasting // Romanian Journal of Economic Forecasting. 2009, No. 4. P. 213 – 223.
4. Mazengia D.H. Forecasting Spot Electricity Market Prices Using Time Series Models: Thesis for the degree of Master of Science in Electric Power Engineering. Gothenburg, Chalmers University of Technology, 2008. 89 p.
5. Нормативные системы в прогнозировании развития предпринимательского сектора экономики / Л.И. Муратова [и др.] // Управление экономическими системами [электронный ресурс]. 2009, №20. URL: http://uecs.mcnip.ru/modules.php?name=News&file=print&sid=145
6. Parzen E. Long memory of statistical time series modeling // NBER-NSF Time Series Conference, USA, Davis, 2004 [электронный ресурс]. 10 p. URL: http://www.stat.tamu.edu/~eparzen/Long%20Memory%20of%20Statistical %20Time%20Series%20Modeling.pdf
7. Ф. Уоссермен “Нейрокомпьютерная техника”, М.: Мир, 1992. – 126 с.
8. Панфилов П. “Введение в нейронные сети” – статьи, журнал «Современный трейдинг» №№ 1, 2, 3 2001г. – СПб.: Изд-во “Альпина”
9. Найман Э.Л. “Малая энциклопедия трейдера”. – К., “ВИРА-Р”, Изд-во “Альфа Капитал”, 1999. – 285 c.
10. А.Эрлих “Технический анализ товарных и финансовых рынков”. Изд-во “Инфра” – М., 1996. – 205 с.
11. Князевский Б.А. и др. Охрана труда в электроустановках. – М.: Энергоатомиздат, 1983. – 185 с.
12. Леоненков А. Нечеткое моделирование в среде MATLAB и fuzzyTECH. СПб: БХВ-Петербург, 2005. 736 с.
13. Armstrong J.S. Forecasting for Marketing // Quantitative Methods in Marketing. London: International Thompson Business Press, 1999. P. 92 – 119.
14. Семенов В.В. Математическое моделирование динамики транспортных потоков мегаполиса. М.: ИПМ им. М.В.Келдыша РАН, 2004. 44 с.
15. «Применение ИНС для создания экспертной системы диагностирования технологического оборудования» А.В. Семенченко Московский государственный строительный университет (МГСУ)
16. http://leonarus.com/2008/09/08/tipichnye-primery-primeneniya-nejronnyx-setej-v-menedzhmente/
17. Галушкин А.И. Применения нейрокомпьютеров в финансовой деятельности
18. Владимир Белов «О перспективах искусственного интеллекта»
19. «Нейронные сети Хопфилда» С.Короткий
20. Бэстенс, Д.-Э., Ван Ден Берг, В.-М., Вуд, Д. (1997). Нейронные сети и финансовые рынки. Принятие решений в торговых операциях. ТВП Научное издательство.
21. Чучуева И. А., Павлов Ю. Н. Сезонно-регрессионная модель прогнозирования в решении задачи прогнозирования цен РСВ (рынок на сутки вперед) // Энерго-Info. 2009. №4. С. 46 – 49.
22. 58. BI EnergoPrice: Прогнозирование цен на электроэнергию.// Общество с ограниченной ответственностью «BIGroupLabs» [электронный ресурс]. URL:
23. http://www.bi-grouplabs.ru/Rech/electricity/BI_EnergoPrice.html
24. Берзон Н.И. Фондовый рынок: Учеб. Пособие для высш. учебн. зав. экон. профиля/ Гос. унив. – Высшая Школа Экономики. Высшая Школа менеджмента./ Н.И.Берзон, А.Ю. Аршавский, Е.А.Буянова, А.С. Красильщиков. Под ред. Н.И.Берзона – 4-е изд., перераб. и доп. – М.: ВИТА-ПРЕСС, 2009. – 624 с.: ил.
25. Быкадоров Р.В., Воронин С.Ю. Вероятностные методы расчета технологического процесса ткачества. Иваново, ИГТА, 2006. – 108 с.
26. Вилленброк Х. Тайны принятия решений// GEO, июль 2009, с. 70-87.
27. Воробьев Н.Н. Теория игр для экономистов-кибернетиков – М.: Наука, Главная редакция физико-математической литературы, 1985. – 272 с.
28. Вороновский Г. К., Махотило К. В., Петрашев С. Н., Сергеев С. А. Генетические алгоритмы, искусственные нейронные сети и проблемы виртуальной реальности. — Харьков: Основа, 1997. — 112 с.
29. Евстигнеев В.Р. Прогнозирование доходности на рынке акций. – М.: Маросейка, 2009. – 192 с.

Купить эту работу

Алгоритмы оценки тренда при анализе временных рядов

2240 ₽

или заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 3000 ₽

Гарантии Автор24

Изображения работ

Страница работы
Страница работы
Страница работы

Понравилась эта работа?

или

11 августа 2017 заказчик разместил работу

Выбранный эксперт:

Автор работы
EkaterinaKonstantinovna
4.4
Большой опыт в написании работ, очень давно работаю на этом ресурсе, выполнила более 15000 заказов
Купить эту работу vs Заказать новую
2 раза Куплено Выполняется индивидуально
Не менее 40%
Исполнитель, загружая работу в «Банк готовых работ» подтверждает, что уровень оригинальности работы составляет не менее 40%
Уникальность Выполняется индивидуально
Сразу в личном кабинете Доступность Срок 1—6 дней
2240 ₽ Цена от 3000 ₽

5 Похожих работ

Дипломная работа

Диплом Нейросети "Распознавание сервированных блюд с использованием нейронных сетей" сдан на 5 + исходный код

Уникальность: от 40%
Доступность: сразу
249 ₽
Дипломная работа

Разработка програмного обеспечения для предоставления государственных услуг через портал

Уникальность: от 40%
Доступность: сразу
2800 ₽
Дипломная работа

Разработка компьютерного демонстрационного эксперемента по физике на флеше

Уникальность: от 40%
Доступность: сразу
2800 ₽
Дипломная работа

Разработка AMR-специалиста отдела снабжения предприятия малого бизнеса

Уникальность: от 40%
Доступность: сразу
2800 ₽
Дипломная работа

Разработка WEB-cистемы "АРМ сотрудник УМО" средствами ASP.NET версии 4.0 и СУБД Microsoft SQL сервер

Уникальность: от 40%
Доступность: сразу
2800 ₽

Отзывы студентов

Отзыв Геннадий Полушкин об авторе EkaterinaKonstantinovna 2018-04-25
Дипломная работа

Автор молодец, просто работа не нужна больше

Общая оценка 5
Отзыв Lesha об авторе EkaterinaKonstantinovna 2014-06-17
Дипломная работа

Работа сложная, диплом по программированию. Большое спасибо за ответственный подход.

Общая оценка 5
Отзыв user13484 об авторе EkaterinaKonstantinovna 2016-05-11
Дипломная работа

Большое спасибо, все замечательно!

Общая оценка 5
Отзыв vovikluch об авторе EkaterinaKonstantinovna 2014-06-24
Дипломная работа

очень хороший автор Спасибо за работу

Общая оценка 5

другие учебные работы по предмету

Готовая работа

Разработка IP-сервера для обеспечения IP-телефонии во внутренних сетях связи

Уникальность: от 40%
Доступность: сразу
2240 ₽
Готовая работа

Обработка и визуализация данных при моделировании электрических машин с использованием программного комплекса «Моделирование в технических устройствах

Уникальность: от 40%
Доступность: сразу
3000 ₽
Готовая работа

Разработка системы для измерения уровня жидкости в резервуарах промышленных масштабов на основе ультразвукового уровнемера.

Уникальность: от 40%
Доступность: сразу
2240 ₽
Готовая работа

Разработка информационной системы поддержки научно-исследовательской деятельности на основе метода Zettelkasten

Уникальность: от 40%
Доступность: сразу
1799 ₽
Готовая работа

Разработка информационной системы учета приёма и оплаты заказов посетителей с использованием СУБД SQL Server и языка программирования С#

Уникальность: от 40%
Доступность: сразу
2200 ₽
Готовая работа

WEB-приложение оформления заказов в кондитерской. Предметом исследования является учет заказов кондитерских изделий в кондитерской.

Уникальность: от 40%
Доступность: сразу
4000 ₽
Готовая работа

WEB-приложение для салона красоты. Предмет исследования – процесс учёта заказов в салон красоты.

Уникальность: от 40%
Доступность: сразу
4000 ₽
Готовая работа

Автоматизация учета и анализа клиентского оборудования для интернет провайдера

Уникальность: от 40%
Доступность: сразу
2800 ₽
Готовая работа

Сравнительный анализ клиентских реализаций импорта пакетов и модулей в экосистеме JavaScript

Уникальность: от 40%
Доступность: сразу
2240 ₽
Готовая работа

Разработка интернет магазина по продаже семян и удобрений на базе joomla 1.7.

Уникальность: от 40%
Доступность: сразу
2000 ₽
Готовая работа

Разработка программного продукта для решений задач на основе метода анализа иерархий

Уникальность: от 40%
Доступность: сразу
500 ₽
Готовая работа

НАХОЖДЕНИЕ СПЕКТРАЛЬНОГО РАДИУСА МАТРИЦЫ МОДИФИЦИРОВАННЫМ СТЕПЕННЫМ МЕТОДОМ

Уникальность: от 40%
Доступность: сразу
3000 ₽