jghjgj
Подробнее о работе
Гарантия сервиса Автор24
Уникальность не ниже 50%
ВВЕДЕНИЕ
Современные системы управления динамическими объектами представляют собой многоцелевые комплексы, обладающие сложной структурой, наделенные богатой функциональностью при работе в разнообразных режимах и обеспечивающие высокое качество протекания соответствующих динамических процессов. Естественно, что построение таких систем немыслимо без широчайшего применения компьютерной поддержки, как на стадии разработки, так и при непосредственной реализации.
Применение современных компьютерных технологий при создании систем управления, в первую очередь, определяется необходимостью обеспечения требуемой функциональности, что достигается на базе формализованных (математических) подходов на этапе исследовательского проектирования. Главная цель всего комплекса работ, которые выполняются при исследовательском проектировании, состоит в формировании математических моделей управляющих устройств или законов управления, обеспечивающих желаемую динамику замкнутых систем в различных режимах работы.
В работе рассмотрены вопросы нейроуправления и моделирования систем управления на примере летательных аппаратов.
ОГЛАВЛЕНИЕ
ВВЕДЕНИЕ 2
1 ПОДХОДЫ К МОДЕЛИРОВАНИЮ ДИНАМИЧЕСКИХ ОБЪЕКТОВ 3
2 ПРИНЦИПЫ ПРОГНОЗИРУЮЩЕГО НЕЙРОУПРАВЛЕНИЯ 11
3 ВОЗМОЖНОСТИ МОДЕЛИРОВАНИЯ СИСТЕМ НЕЙРОУПРАВЛЕНИЯ В СИСТЕМЕ MATLAB 16
4 МАТЕМАТИЧЕСКАЯ МОДЕЛЬ УПРАВЛЕНИЯ ЛЕТАТЕЛЬНЫМ АППАРАТОМ 18
ЗАКЛЮЧЕНИЕ 35
СПИСОК ЛИТЕРАТУРЫ 36
ЗАКЛЮЧЕНИЕ
Решение оптимальных задач управления с прогнозированием является одним из современных методов исследования систем управления и легко реализуется с помощью таких систем как MATLAB, которая с её пакетами обладает большими возможностями и инструментами решения задач анализа, синтеза и моделирования систем управления, в том числе и с прогнозированием. Исследование возможности нейроуправления объектами на примере квадрокоптера показало широкие возможности использования нейронных сетей в системах управления. В этой связи представляет интерес перспектива использования нейросетей в управлении нестационарными режимами технологических процессов.
СПИСОК ЛИТЕРАТУРЫ
1. Чернышов, В.Н. Теория систем и системный анализ : учеб. пособие / В.Н. Чернышов, А.В. Чернышов. – Тамбов : Изд-во Тамб. гос. техн. ун-та, 2008. – 96 с.
2. Ракитов А.И., Бондяев Д.А., Романов И.Б., Егерев С.В., Щербаков А.Ю. Системный анализ и аналитические исследования: руководство для профессиональных аналитиков – М., 2009. - 448 c.
3. Пупков К.А. Моделирование и испытание систем автоматического управления: Учебное пособие. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2012.
4. Герасимов, Б.И. Основы теории системного анализа: качество и выбор : учебное пособие / Б.И. Герасимов, Г.Л. Попова, Н.В. Злобина. – Тамбов : Изд-во ФГБОУ ВПО «ТГТУ», 2011. – 80 с.
5. Качала В.В. Основы теории систем и системного анализа. Учебное пособие для вузов. М.: Горячая линия – Телеком, 2007. 216 с.
6. Тарасенко Ф.П. Прикладной системный анализ : учебное пособие / Ф.П. Тарасенко.— М. : КНОРУС, 2010. — 224 с.
7. Данелян Т.Я. Теория систем и системный анализ (ТСиСА): учебно-методический комплекс / Т.Я. Данелян. – М.: Изд. центр ЕАОИ, 2010. – 303 с.
8. Хайкин С. Нейронные сети: полный курс, 2¬e издание.:Пер. с анrл. – М. Издательский дом "Вильямс", 2006. – 1104 с.
9. Каллан Р. Основные концепции нейронных сетей. : Пер. с англ. — М. : Издательский дом Вильямс, 2001. – 287 с.
10. Осовский С. Нейронные сети для обработки информации / Пер. с польского И.Д. Рудинского. - М.: Финансы и статистика, 2002. - 344 с: ил.
11. О.А. Морозов, П.Е. Овчинников, Ю.А. Сёмин, В.Р. Фидельман. Применение теоретико-информационного подхода для обучения многослойного персептрона в задаче распознавания фонем // Вестник Нижегородского университета им. Н.И. Лобачевского, 2010, № 5 (2), с. 354–357
12. Чернодуб А. Н. Обзор методов нейроуправления / А. Н. Чернодуб, Д. А. Дзюба. // Проблемы программирования. — 2011. — No 2. — С. 79-94.
13. Soloway D., Haley P.J. Neural Generalized Predictive Control // Proceedings of the IEEE International Symposium on Intelligent Control. — 18 September 1996. — 15. — P. 277—281.
14. Tomić, Teodor and Maier, Moritz and Haddadin, Sami (2014) Learning Quadrotor Maneuvers From Optimal Control and Generalizing in Real-Time. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1747-1754.
15. Clarke D. W., Generalized Predictive Control - Part 1: The Basic Algorithm / D. W. Clarke, C. Mohtadi and P. C. Tufts // Automatica. – 1987. - Volume 23. – Pp. 137-148. 5. Clarke D. W. Generalized Predictive Control - Part 2: The Basic Algorithm / D. W. Clarke, C. Mohtadi and P. C. Tufts // Automatica. – 1987. - Volume 23. – Pp. 149-163.
16. Cayero, J., Pep Cugueró Escofet, Morcego, B. Impedance control of a planar quadrotor with an extended Kalman filter external wrench estimator. A: euRathlon/SHERPA SUMMER SCHOOL 2015 ON FIELD ROBOTICS. «euRathlon/SHERPA SUMMER SCHOOL 2015 ON FIELD ROBOTICS». Oulu: 2015, p. 1-5.
17. Кузнецов Б. И. Синтез нейроконтроллера с предсказанием для двухмассовой электромеханической системы / Б. И. Кузнецов, Т. Е. Василец, А. А. Варфоломеев //Электротехника и электромеханика. — 2008. — Т. 3. — С. 27 — 32.
18. Рэндал У. Биард, Тимоти У. МакЛэйн Малые беспилотные летательные аппараты: теория и практика Москва: ТЕХНОСФЕРА, 2015. – 312 c.
19. А. А. Пыркин, Т. А. Мальцева, Д. В. Лабадин, М. О. Суров, а. А. Бобцов. Синтез системы управления квадрокоптером с использованием упрощенной математической модели // Изв. Вузов. Приборостроение. 2013. Т. 56, № 4. – с. 47-51.
20. Веремей Е. И., Еремеев В. В. Введение в задачи управления на основе предсказаний // Всероссийская научная конференция «Проектирование научных и инженерных приложений в среде MATLAB». — М., 2004. — С. 98—115.
21. Баландин Д.В., Городецкий С.Ю. Классические и современные методы построения регуляторов в примерах. Электронное учебно-методическое пособие. – Нижний Новгород: Нижегородский госуниверситет, 2012. – 122 с.
22. Квасов Б. Численные методы анализа и линейной алгебры. Использование Matlab и Scilab. Лань, 2016 г.
23. Кетков Ю., Кетков А., Шульц М. - MATLAB 7. Программирование, численные методы. БХВ-Петербург, 2005. – 742 с.
24. Омату С. Нейроуправление и его приложения / С. Омату, М. Халид, Р. Юсуф. – М.: Изд. Предприятия редакции журнала Радиотехника, 2000. – 230 с.
25. Подпорин С.А. Использование нейронечетких контроллеров в системах управления движением морских судов // Збірник наукових праць Харківського університету Повітряних Сил, 2012, випуск 4(33). С. 181-187.
Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям
ВВЕДЕНИЕ
Современные системы управления динамическими объектами представляют собой многоцелевые комплексы, обладающие сложной структурой, наделенные богатой функциональностью при работе в разнообразных режимах и обеспечивающие высокое качество протекания соответствующих динамических процессов. Естественно, что построение таких систем немыслимо без широчайшего применения компьютерной поддержки, как на стадии разработки, так и при непосредственной реализации.
Применение современных компьютерных технологий при создании систем управления, в первую очередь, определяется необходимостью обеспечения требуемой функциональности, что достигается на базе формализованных (математических) подходов на этапе исследовательского проектирования. Главная цель всего комплекса работ, которые выполняются при исследовательском проектировании, состоит в формировании математических моделей управляющих устройств или законов управления, обеспечивающих желаемую динамику замкнутых систем в различных режимах работы.
В работе рассмотрены вопросы нейроуправления и моделирования систем управления на примере летательных аппаратов.
ОГЛАВЛЕНИЕ
ВВЕДЕНИЕ 2
1 ПОДХОДЫ К МОДЕЛИРОВАНИЮ ДИНАМИЧЕСКИХ ОБЪЕКТОВ 3
2 ПРИНЦИПЫ ПРОГНОЗИРУЮЩЕГО НЕЙРОУПРАВЛЕНИЯ 11
3 ВОЗМОЖНОСТИ МОДЕЛИРОВАНИЯ СИСТЕМ НЕЙРОУПРАВЛЕНИЯ В СИСТЕМЕ MATLAB 16
4 МАТЕМАТИЧЕСКАЯ МОДЕЛЬ УПРАВЛЕНИЯ ЛЕТАТЕЛЬНЫМ АППАРАТОМ 18
ЗАКЛЮЧЕНИЕ 35
СПИСОК ЛИТЕРАТУРЫ 36
ЗАКЛЮЧЕНИЕ
Решение оптимальных задач управления с прогнозированием является одним из современных методов исследования систем управления и легко реализуется с помощью таких систем как MATLAB, которая с её пакетами обладает большими возможностями и инструментами решения задач анализа, синтеза и моделирования систем управления, в том числе и с прогнозированием. Исследование возможности нейроуправления объектами на примере квадрокоптера показало широкие возможности использования нейронных сетей в системах управления. В этой связи представляет интерес перспектива использования нейросетей в управлении нестационарными режимами технологических процессов.
СПИСОК ЛИТЕРАТУРЫ
1. Чернышов, В.Н. Теория систем и системный анализ : учеб. пособие / В.Н. Чернышов, А.В. Чернышов. – Тамбов : Изд-во Тамб. гос. техн. ун-та, 2008. – 96 с.
2. Ракитов А.И., Бондяев Д.А., Романов И.Б., Егерев С.В., Щербаков А.Ю. Системный анализ и аналитические исследования: руководство для профессиональных аналитиков – М., 2009. - 448 c.
3. Пупков К.А. Моделирование и испытание систем автоматического управления: Учебное пособие. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2012.
4. Герасимов, Б.И. Основы теории системного анализа: качество и выбор : учебное пособие / Б.И. Герасимов, Г.Л. Попова, Н.В. Злобина. – Тамбов : Изд-во ФГБОУ ВПО «ТГТУ», 2011. – 80 с.
5. Качала В.В. Основы теории систем и системного анализа. Учебное пособие для вузов. М.: Горячая линия – Телеком, 2007. 216 с.
6. Тарасенко Ф.П. Прикладной системный анализ : учебное пособие / Ф.П. Тарасенко.— М. : КНОРУС, 2010. — 224 с.
7. Данелян Т.Я. Теория систем и системный анализ (ТСиСА): учебно-методический комплекс / Т.Я. Данелян. – М.: Изд. центр ЕАОИ, 2010. – 303 с.
8. Хайкин С. Нейронные сети: полный курс, 2¬e издание.:Пер. с анrл. – М. Издательский дом "Вильямс", 2006. – 1104 с.
9. Каллан Р. Основные концепции нейронных сетей. : Пер. с англ. — М. : Издательский дом Вильямс, 2001. – 287 с.
10. Осовский С. Нейронные сети для обработки информации / Пер. с польского И.Д. Рудинского. - М.: Финансы и статистика, 2002. - 344 с: ил.
11. О.А. Морозов, П.Е. Овчинников, Ю.А. Сёмин, В.Р. Фидельман. Применение теоретико-информационного подхода для обучения многослойного персептрона в задаче распознавания фонем // Вестник Нижегородского университета им. Н.И. Лобачевского, 2010, № 5 (2), с. 354–357
12. Чернодуб А. Н. Обзор методов нейроуправления / А. Н. Чернодуб, Д. А. Дзюба. // Проблемы программирования. — 2011. — No 2. — С. 79-94.
13. Soloway D., Haley P.J. Neural Generalized Predictive Control // Proceedings of the IEEE International Symposium on Intelligent Control. — 18 September 1996. — 15. — P. 277—281.
14. Tomić, Teodor and Maier, Moritz and Haddadin, Sami (2014) Learning Quadrotor Maneuvers From Optimal Control and Generalizing in Real-Time. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1747-1754.
15. Clarke D. W., Generalized Predictive Control - Part 1: The Basic Algorithm / D. W. Clarke, C. Mohtadi and P. C. Tufts // Automatica. – 1987. - Volume 23. – Pp. 137-148. 5. Clarke D. W. Generalized Predictive Control - Part 2: The Basic Algorithm / D. W. Clarke, C. Mohtadi and P. C. Tufts // Automatica. – 1987. - Volume 23. – Pp. 149-163.
16. Cayero, J., Pep Cugueró Escofet, Morcego, B. Impedance control of a planar quadrotor with an extended Kalman filter external wrench estimator. A: euRathlon/SHERPA SUMMER SCHOOL 2015 ON FIELD ROBOTICS. «euRathlon/SHERPA SUMMER SCHOOL 2015 ON FIELD ROBOTICS». Oulu: 2015, p. 1-5.
17. Кузнецов Б. И. Синтез нейроконтроллера с предсказанием для двухмассовой электромеханической системы / Б. И. Кузнецов, Т. Е. Василец, А. А. Варфоломеев //Электротехника и электромеханика. — 2008. — Т. 3. — С. 27 — 32.
18. Рэндал У. Биард, Тимоти У. МакЛэйн Малые беспилотные летательные аппараты: теория и практика Москва: ТЕХНОСФЕРА, 2015. – 312 c.
19. А. А. Пыркин, Т. А. Мальцева, Д. В. Лабадин, М. О. Суров, а. А. Бобцов. Синтез системы управления квадрокоптером с использованием упрощенной математической модели // Изв. Вузов. Приборостроение. 2013. Т. 56, № 4. – с. 47-51.
20. Веремей Е. И., Еремеев В. В. Введение в задачи управления на основе предсказаний // Всероссийская научная конференция «Проектирование научных и инженерных приложений в среде MATLAB». — М., 2004. — С. 98—115.
21. Баландин Д.В., Городецкий С.Ю. Классические и современные методы построения регуляторов в примерах. Электронное учебно-методическое пособие. – Нижний Новгород: Нижегородский госуниверситет, 2012. – 122 с.
22. Квасов Б. Численные методы анализа и линейной алгебры. Использование Matlab и Scilab. Лань, 2016 г.
23. Кетков Ю., Кетков А., Шульц М. - MATLAB 7. Программирование, численные методы. БХВ-Петербург, 2005. – 742 с.
24. Омату С. Нейроуправление и его приложения / С. Омату, М. Халид, Р. Юсуф. – М.: Изд. Предприятия редакции журнала Радиотехника, 2000. – 230 с.
25. Подпорин С.А. Использование нейронечетких контроллеров в системах управления движением морских судов // Збірник наукових праць Харківського університету Повітряних Сил, 2012, випуск 4(33). С. 181-187.
| Купить эту работу vs Заказать новую | ||
|---|---|---|
| 0 раз | Куплено | Выполняется индивидуально |
|
Не менее 40%
Исполнитель, загружая работу в «Банк готовых работ» подтверждает, что
уровень оригинальности
работы составляет не менее 40%
|
Уникальность | Выполняется индивидуально |
| Сразу в личном кабинете | Доступность | Срок 1—6 дней |
| 660 ₽ | Цена | от 500 ₽ |
Не подошла эта работа?
В нашей базе 148977 Курсовых работ — поможем найти подходящую