Спасибо большое автору! Работа выполнена очень большая и раньше срока! Всё четко! Автора советую
Подробнее о работе
Гарантия сервиса Автор24
Уникальность не ниже 50%
Особняком в материаловедении фуллеренов стоит направление, которое связано с синтезом и исследованием свойств металлофуллеренов, в числе последних самыми исследованными представляются фуллериды, содержащие в своей основе щелочные и щелочноземельные элементы [1]. В зависимости от того, какой из методов легирования применяется, примесные атомы размещаются не только в пустотах между узлами решетки фуллерита, но так же и во внутримолекулярных полостях молекул C60, тем самым формируются упорядоченные структуры, которые не свойственны этому веществу в его первозданном виде [2-5].
Тем не менее, на сегодняшний день литература не слишком богата достоверными сведениями о структуре металлофуллеренов, основанных на металлах, которые химически не взаимодействуют с фуллереном. Такие металлофуллерены получили наименование клатратных [6-8].
Логичным видится предположение о том, что свойства, которыми обладают клатраты, в основном должны быть определяемы изменением в решеточных колебательных спектрах оказывающих друг на друга взаимное влияние подрешеток компонентов, а отнюдь не переносом заряда с атомов металла на фуллеритовую матрицу, как мы можем это наблюдать в случае с фуллеридами, образованными щелочными и щелочно-земельными элементами.
Вот почему для анализа структуры, которой обладают металлофуллереновые клатраты, в первую очередь требуется определение концентрации металлической компоненты в них и установление того, каким типом пустот обладают кристаллы фуллерита, преимущественно заполненные примесными атомами. Из анализа литературы следует, что степень изученности специфики формирования дифракционных картин от металлофуллеренов, имеющих клатратную структуру, на сегодняшний день недостаточна. Таким образом, очевидна необходимость выполнения идентификации структуры металлофуллереновых клатратов, чем обусловлена важность проводимого исследования и его актуальность.
Введение 3
1 Краткий теоретический обзор 4
1.1 Кристаллы фулерита 4
1.2 Особенности дифракционной картины, формируемой кристаллами фулерита 6
2 Описание методики исследуемого эксперимента 10
3.1 Обоснование выбора модельных объектов, предназначенных для исследования структуры металлофуллеренов 10
3.2 Методика синтеза и исследования структуры чистых и легированных висмутом пленок фуллерита 10
3 Изучение результатов 13
4.1 Теоретическое исследование особенностей, проявляемых дифракцией рентгеновского излучения кристаллов металлофуллеренов 13
4.2. Экспериментальные данные об изучении состава и структуры металлофуллереновых конденсатов системы C60—Bi 19
Заключение 21
Литература 22
Используя теорию рассеяния, был выполнен анализ особенностей, проявляемых дифракцией рентгеновских лучей модельными системами металлофуллереновых клатратов, образованных в результате заполнения атомами легирующего элемента октаэдрических, тетраэдрических и внутримолекулярных пустот гранецентрированных кристаллов фуллерита.
Показано, что формирование легирующим компонентом периодических структур, которые задаются матрицей фуллерита, ведет к значимому изменению соотношения интенсивности рентгеновских рефлексов, характер и величина которого в общем случае определяет параметр решетки, тип преимущественно формируемой структуры фуллерида, сорт легирующих частиц и концентрация заполненных атомами металла пустот кристалла фуллерита.
На основе установленных закономерностей проведен анализ структуры конденсированных пленок фуллерита, облученных потоком ионов висмута, прошедших ускорение и обладающих энергией ~ 100 eV. Выявлено, что ионное облучение ведет к тому, что фуллерит насыщается атомами висмута. Последние при условии результирующего соотношения компонентов в пленке преимущественно сегрегированы в виде отдельной фазы.
Тем не менее, часть атомов висмута при этом размещается в октаэдрических пустотах гранецентрированных решеток кристаллов фуллерита, в результате чего образуется металлофуллереновый клатрат, имеющий интегральный коэффициент заполнения пор, равный .
1. А.В. Елецкий, Б.М. Смирнов. УФН 165, 9, 977 (1995).
2. L. Forro, L. Mihaly. Rep. Prog. Phys. 64, 649 (2001).
3. T. Braun, H. Rausch. Chem. Phys. Lett. 237, 443 (1995).
4. P. Reinke, P. Oelhafen. J. Chem. Phys. 116, 22, 9850 (2002).
5. T. Ohtsuki, K. Masumoto, K. Ohno, Y. Maruyma, Y. Kawazoe, K. Sueki, K. Kikuchi. Phys. Rev. Lett. 77, 17, 3522 (1996).
6. N. Ke, W.Y. Cheung, S.P. Wong, S.Q. Peng. Carbon 35, 6, 759 (1997).
7. W. Zhao, Y. Li, L. Chen. Solid State Commun. 92, 4, 313 (1994).
8. Т.Л. Макарова, В.Г. Мелехин, И.Т. Серенков, В.И. Сахаров, И.Б. Захарова, В.Э. Гасумянц. ФТТ 43, 7, 1336 (2001).
9. Е.В. Шулаков, Р.А. Диланян, О.Г. Рыбченко, В.Ш. Шехтман. Кристаллография 41, 1, 39 (1996).
10. I.F. Mikhailov, V.E. Pukha, O.V Sobol’, V.V Varganov. Functional Mater. 10, 2, 266 (2003).
11. V. Bernshtein, I. Oref. Phys. Rev. A 63, 043 201 (2001).
12. В.Е. Пуха, И.Ф. Михайлов, А.Н. Дроздов, Л.П. Фомина. ФТТ 47, 572 (2005).
13. А.Н. Дроздов, А.С. Вус, В.Е. Пуха, Е.Н. Зубарев, А.Т. Пу-гачев. ФТТ 51, 1034 (2009).
14. Л.И. Миркин. Справочник по рентгеноструктурному анализу поликристаллов. Физматлит, М. (1961). 863 с.
15. Я.С. Уманский, Ю.А. Скаков, А.Н. Иванов, Л.Н. Расторгуев. Кристаллография, рентгенография и электронная микроскопия. Металлургия, М. (1982). С. 602.
16. М.А. Кривоглаз. Теория рассеяния рентгеновских лучей и тепловых нейтронов реальными кристаллами. Наука, М. (1967).
Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям
Особняком в материаловедении фуллеренов стоит направление, которое связано с синтезом и исследованием свойств металлофуллеренов, в числе последних самыми исследованными представляются фуллериды, содержащие в своей основе щелочные и щелочноземельные элементы [1]. В зависимости от того, какой из методов легирования применяется, примесные атомы размещаются не только в пустотах между узлами решетки фуллерита, но так же и во внутримолекулярных полостях молекул C60, тем самым формируются упорядоченные структуры, которые не свойственны этому веществу в его первозданном виде [2-5].
Тем не менее, на сегодняшний день литература не слишком богата достоверными сведениями о структуре металлофуллеренов, основанных на металлах, которые химически не взаимодействуют с фуллереном. Такие металлофуллерены получили наименование клатратных [6-8].
Логичным видится предположение о том, что свойства, которыми обладают клатраты, в основном должны быть определяемы изменением в решеточных колебательных спектрах оказывающих друг на друга взаимное влияние подрешеток компонентов, а отнюдь не переносом заряда с атомов металла на фуллеритовую матрицу, как мы можем это наблюдать в случае с фуллеридами, образованными щелочными и щелочно-земельными элементами.
Вот почему для анализа структуры, которой обладают металлофуллереновые клатраты, в первую очередь требуется определение концентрации металлической компоненты в них и установление того, каким типом пустот обладают кристаллы фуллерита, преимущественно заполненные примесными атомами. Из анализа литературы следует, что степень изученности специфики формирования дифракционных картин от металлофуллеренов, имеющих клатратную структуру, на сегодняшний день недостаточна. Таким образом, очевидна необходимость выполнения идентификации структуры металлофуллереновых клатратов, чем обусловлена важность проводимого исследования и его актуальность.
Введение 3
1 Краткий теоретический обзор 4
1.1 Кристаллы фулерита 4
1.2 Особенности дифракционной картины, формируемой кристаллами фулерита 6
2 Описание методики исследуемого эксперимента 10
3.1 Обоснование выбора модельных объектов, предназначенных для исследования структуры металлофуллеренов 10
3.2 Методика синтеза и исследования структуры чистых и легированных висмутом пленок фуллерита 10
3 Изучение результатов 13
4.1 Теоретическое исследование особенностей, проявляемых дифракцией рентгеновского излучения кристаллов металлофуллеренов 13
4.2. Экспериментальные данные об изучении состава и структуры металлофуллереновых конденсатов системы C60—Bi 19
Заключение 21
Литература 22
Используя теорию рассеяния, был выполнен анализ особенностей, проявляемых дифракцией рентгеновских лучей модельными системами металлофуллереновых клатратов, образованных в результате заполнения атомами легирующего элемента октаэдрических, тетраэдрических и внутримолекулярных пустот гранецентрированных кристаллов фуллерита.
Показано, что формирование легирующим компонентом периодических структур, которые задаются матрицей фуллерита, ведет к значимому изменению соотношения интенсивности рентгеновских рефлексов, характер и величина которого в общем случае определяет параметр решетки, тип преимущественно формируемой структуры фуллерида, сорт легирующих частиц и концентрация заполненных атомами металла пустот кристалла фуллерита.
На основе установленных закономерностей проведен анализ структуры конденсированных пленок фуллерита, облученных потоком ионов висмута, прошедших ускорение и обладающих энергией ~ 100 eV. Выявлено, что ионное облучение ведет к тому, что фуллерит насыщается атомами висмута. Последние при условии результирующего соотношения компонентов в пленке преимущественно сегрегированы в виде отдельной фазы.
Тем не менее, часть атомов висмута при этом размещается в октаэдрических пустотах гранецентрированных решеток кристаллов фуллерита, в результате чего образуется металлофуллереновый клатрат, имеющий интегральный коэффициент заполнения пор, равный .
1. А.В. Елецкий, Б.М. Смирнов. УФН 165, 9, 977 (1995).
2. L. Forro, L. Mihaly. Rep. Prog. Phys. 64, 649 (2001).
3. T. Braun, H. Rausch. Chem. Phys. Lett. 237, 443 (1995).
4. P. Reinke, P. Oelhafen. J. Chem. Phys. 116, 22, 9850 (2002).
5. T. Ohtsuki, K. Masumoto, K. Ohno, Y. Maruyma, Y. Kawazoe, K. Sueki, K. Kikuchi. Phys. Rev. Lett. 77, 17, 3522 (1996).
6. N. Ke, W.Y. Cheung, S.P. Wong, S.Q. Peng. Carbon 35, 6, 759 (1997).
7. W. Zhao, Y. Li, L. Chen. Solid State Commun. 92, 4, 313 (1994).
8. Т.Л. Макарова, В.Г. Мелехин, И.Т. Серенков, В.И. Сахаров, И.Б. Захарова, В.Э. Гасумянц. ФТТ 43, 7, 1336 (2001).
9. Е.В. Шулаков, Р.А. Диланян, О.Г. Рыбченко, В.Ш. Шехтман. Кристаллография 41, 1, 39 (1996).
10. I.F. Mikhailov, V.E. Pukha, O.V Sobol’, V.V Varganov. Functional Mater. 10, 2, 266 (2003).
11. V. Bernshtein, I. Oref. Phys. Rev. A 63, 043 201 (2001).
12. В.Е. Пуха, И.Ф. Михайлов, А.Н. Дроздов, Л.П. Фомина. ФТТ 47, 572 (2005).
13. А.Н. Дроздов, А.С. Вус, В.Е. Пуха, Е.Н. Зубарев, А.Т. Пу-гачев. ФТТ 51, 1034 (2009).
14. Л.И. Миркин. Справочник по рентгеноструктурному анализу поликристаллов. Физматлит, М. (1961). 863 с.
15. Я.С. Уманский, Ю.А. Скаков, А.Н. Иванов, Л.Н. Расторгуев. Кристаллография, рентгенография и электронная микроскопия. Металлургия, М. (1982). С. 602.
16. М.А. Кривоглаз. Теория рассеяния рентгеновских лучей и тепловых нейтронов реальными кристаллами. Наука, М. (1967).
Купить эту работу vs Заказать новую | ||
---|---|---|
0 раз | Куплено | Выполняется индивидуально |
Не менее 40%
Исполнитель, загружая работу в «Банк готовых работ» подтверждает, что
уровень оригинальности
работы составляет не менее 40%
|
Уникальность | Выполняется индивидуально |
Сразу в личном кабинете | Доступность | Срок 1—6 дней |
660 ₽ | Цена | от 500 ₽ |
Не подошла эта работа?
В нашей базе 149282 Курсовой работы — поможем найти подходящую