Спасибо автору за выполненную работу! Все верно, преподаватель принял работу. Рекомендую всем!
Подробнее о работе
Гарантия сервиса Автор24
Уникальность не ниже 50%
Введение
В настоящее время бытовые холодильники нашли широкое применение: они имеются практически в каждом доме. Система управления в бытовых холодильниках - тот интерфейс, который позволяет хозяину устанавливать нужные ему режимы работы прибора. Существует две принципиально отличающиеся системы: электромеханическая и электронная. При этом, внешние регуляторы могут быть практически одинаковыми.
Механическая система сейчас практически не используется. Более того, даже модели холодильников 30-летней давности обладали электромеханической, а не чисто механической системой.
В чем преимущества электронной системы? Прежде всего, в том, что она позволяет выставлять более точные значения температуры в различных камерах холодильного прибора. К тому же, в распоряжении пользователя оказывается больше полезных функций.
Электромеханическую систему многие считают более надёжной, хотя на данный момент однозначно этого утверждать нельзя: надёжность элементов электронной системы управления растёт с каждым годом. Вопреки установившемуся мнению, что ремонт электромеханической системы обходится дешевле ремонта электронной, в некоторых случаях происходит всё наоборот. Например, в случае выхода из строя температурного датчика (термистора) замена такого датчика может обойтись дешевле замены электромеханического терморегулятора. Хотя, конечно, в случае выхода из строя электронного модуля управления ремонт может быть достаточно дорог. Следует отметить, что электронные блоки сами собой ломаются редко, как правило, их выход из строя происходит из-за скачков напряжения, или из-за неправильной эксплуатации холодильника (например, владелец холодильника решил полить водой цветы, установленные на холодильнике, случайно пролил воду, вода попала на электронный блок, блок сгорел). С другой стороны, электромеханическая система устанавливает температуру менее точно, чем ее более «продвинутая» сестрица, ориентирующаяся на показания температурных датчиков, точность которых намного выше, чем точность электромеханических терморегуляторов. К тому же таких датчиков может несколько, что также позволяет оценивать температуру в камерах более точно.
Данный курсовой проект посвящен разработке микропроцессорной системы управления, предназначенной для замены имеющихся электромеханических систем управления в бытовых двухкамерных холодильниках.
Содержание
Введение………………………………………………………………………….3
Глава.1.Аналитическая часть………………………………………………...5
1.1.Анализ бытовых холодильников…………………………………………...5
1.2.Физический принцип действия……………………………..…….………..11
1.3. Классификация……………………………………….…….………………14
1.4 Конструкция бытовых холодильников…………………..………………..20
1.5. Основные показатели качества бытовых холодильников……………..35
1.6 Анализ основных технических решений…………………………………39
Глава 2. Принцип работы однокамерного и двухкамерного
холодильника………………………………………………………………….41
2.1. Принцип работы бытового двухкамерного холодильника с
лектромеханической системой управления………………………………….43
2.2. Бытовой холодильник с электронной системой управления…………..45
2.3.Постановка задачи…………………………………………………………50
Глава 3. Описание конструкции холодильника…………………………66
3.1.Устройство холодильника-морозильника……………………………………66
3.2.Электрическая схема хо¬лодильника-морозильника
«Stinol-104» КШТ-305………………………………………………………...72
Глава 4 Технологическая часть……………………………………………75
4.1 Технологические основы производства и ремонта компрессионных герметичных агрегатов………………………………………………………..75
Заключение……………………………………………………………………..80
Список литературы…………………………………………………………….81
Приложение 1. Блок-схема основной программы…………………………...83
Приложение 2. Блок-схема подпрограмы……………………………………84
Приложение 3. Функциональная схема устройства…………………………85
Приложение 4. Схема электрическая принципиальная……………………..86
Глава.1.АНАЛИТИЧЕСКАЯ ЧАСТЬ
1.1.АНАЛИЗ БЫТОВЫХ ХОЛОДИЛЬНИКОВ
Холодильные агрегаты бытовых холодильников выполняют роль холодильных машин, т. е. служат для отвода тепла из холодильной камеры и передачи его в более теплую окружающую среду. Агрегат может быть демонтирован из шкафа и заменен другим, предназначенным для холодильников данного типа. Конструкции отдельных, узлов и деталей холодильных агрегатов различных холодильников с одной холодильной камерой и дверцей могут несколько отличаться друг от друга, однако принципиальная схема их одинакова .
Холодильный процесс осуществляется следующим образом. При работе мотор-компрессора жидкий хладагент из конденсатора по капиллярной трубке подается в испаритель. При этом давление и температура жидкого хладагента понижаются за счет ограниченной пропускной способности капиллярной трубки и охлаждения холодными парами хладагента, идущими навстречу по всасывающей трубке из испарителя. При температуре – 10 – 20 С и давлении 0 –1 атм жидкий хладагент в испарителе кипит, поглощая тепло из холодильной камеры. Чтобы обеспечить постоянное кипение хладагента в испарителе при определенном давлении, холодные пары его отсасываются компрессором через всасывающую трубку. При движении паров к компрессору температура их повышается за счет теплообмена с теплым жидким хладагентом, движущимся по капиллярной трубке, и окружающей средой. При входе в кожух мотор-компрессора температура паров равна примерно 15 С.
Так как температура обмоток электродвигателя и цилиндра компрессора значительно выше 15 С, то они охлаждаются парами хладагента, что улучшает условия работы электродвигателя и компрессора в герметичном кожухе. Подогретые пары хладагента нагнетаются компрессором в конденсатор, который охлаждается воздухом окружающей среды. При этом давление паров повышается до 8 – 11 атм в зависимости от температуры окружающей среды. При таком давлении температура конденсации насыщенных паров хладагента становится выше температуры окружающего воздуха, поэтому в последних витках конденсатора пары хладагента превращаются в жидкость. Процесс конденсации паров сопровождается выделением тепла, которое отдается окружающему воздуху. Жидкий хладагент, имеющий температуру на
10 – 15 С выше температуры окружающей среды, проходит через фильтр, совмещенный с осушительным патроном, и далее по капиллярной трубке вновь поступает в испаритель. Описанный круговой холодильный процесс работы агрегата повторяется пока работает мотор-компрессор.
Список литературы.
1. Холодильная техника и технология: Учебник под ред. А.В.Руцкого.-М.:ИНФРА-М,2000.-286 с.-(Серия «Высшее образование»).
2. Свердлов Г.З., Явнель Б.К. Курсовое и дипломное проектирование холодильных установок и систем кондиционирования воздуха . – 2-е изд., перераб. и доп. – М.: Пищевая промышленность,1978 – 264 с.
3. Основы холодильной техники и холодильной технологии: Мещеряков Ф.Е.-М., 1975-изд. «Пищевая промышленность», 559 с.
4. Якобсон В.Б. Малые холодильные машины. – М.: Пищевая промышленность,1977. – 368 с.
5. Зеликовский И.Х., Каплан Л.Г.Малые холодильные машины и установки: Малые холодильные установки. – 2-е изд., перераб и доп. – М.: Пищевая промышленность,1979.–448 с.
6. Кондрашова Н.Г., Лашутина Н.Г. Холодильно-компрессорные
машины и установки. – 3-е изд., перераб. и доп. – М.: Высшая школа,1984 – 335 с.
7. Лепаев Д.А. Бытовые электроприборы. – М.: Легкая индустрия,1979 – 336с.
8. Лесников В.В. Бытовые компрессионные холодильники (методическое указание по дисциплине «Бытовые машины и приборы») Уфа 1998-47с.
9. Доссат Р.Дж. Основы холодильной техники.
Пер. с англ. – М.: Легкая и пищевая промышленность,1984 – 520 с.
10. Вейнберг Б.С. Вайн Л.Н. Бытовые компрессионные холодильники. – М.: Пищевая промышленность ,1972. – 272 с.
11. Ресурсы Internet
1. http://www.iceberg.ru/services/?action=showtable&id=485&parent=313
. http://btmax.ru/?cid=436
. http://holodilnik.tkat.ru/?mod=articles&act=full&id_article=1334
. http://www.stinol-moscow.ru/dvuhkamer.htm
. http://focus.ti.com/lit/ug/spru060d/spru060d.pdf
. http://www.compel.ru/images/catalog/386/tms320f2810-12_c2810-12.pdf
. http://ru.heating.danfoss.com/PCMPDF/pt_1000.pdf
. Бакшаев, А.М. Конспект лекций по дисциплине "Эксплуатация средств вычислительной техники"[Текст] /А.М. Бакшаев/ Киров, 2007
Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям
Введение
В настоящее время бытовые холодильники нашли широкое применение: они имеются практически в каждом доме. Система управления в бытовых холодильниках - тот интерфейс, который позволяет хозяину устанавливать нужные ему режимы работы прибора. Существует две принципиально отличающиеся системы: электромеханическая и электронная. При этом, внешние регуляторы могут быть практически одинаковыми.
Механическая система сейчас практически не используется. Более того, даже модели холодильников 30-летней давности обладали электромеханической, а не чисто механической системой.
В чем преимущества электронной системы? Прежде всего, в том, что она позволяет выставлять более точные значения температуры в различных камерах холодильного прибора. К тому же, в распоряжении пользователя оказывается больше полезных функций.
Электромеханическую систему многие считают более надёжной, хотя на данный момент однозначно этого утверждать нельзя: надёжность элементов электронной системы управления растёт с каждым годом. Вопреки установившемуся мнению, что ремонт электромеханической системы обходится дешевле ремонта электронной, в некоторых случаях происходит всё наоборот. Например, в случае выхода из строя температурного датчика (термистора) замена такого датчика может обойтись дешевле замены электромеханического терморегулятора. Хотя, конечно, в случае выхода из строя электронного модуля управления ремонт может быть достаточно дорог. Следует отметить, что электронные блоки сами собой ломаются редко, как правило, их выход из строя происходит из-за скачков напряжения, или из-за неправильной эксплуатации холодильника (например, владелец холодильника решил полить водой цветы, установленные на холодильнике, случайно пролил воду, вода попала на электронный блок, блок сгорел). С другой стороны, электромеханическая система устанавливает температуру менее точно, чем ее более «продвинутая» сестрица, ориентирующаяся на показания температурных датчиков, точность которых намного выше, чем точность электромеханических терморегуляторов. К тому же таких датчиков может несколько, что также позволяет оценивать температуру в камерах более точно.
Данный курсовой проект посвящен разработке микропроцессорной системы управления, предназначенной для замены имеющихся электромеханических систем управления в бытовых двухкамерных холодильниках.
Содержание
Введение………………………………………………………………………….3
Глава.1.Аналитическая часть………………………………………………...5
1.1.Анализ бытовых холодильников…………………………………………...5
1.2.Физический принцип действия……………………………..…….………..11
1.3. Классификация……………………………………….…….………………14
1.4 Конструкция бытовых холодильников…………………..………………..20
1.5. Основные показатели качества бытовых холодильников……………..35
1.6 Анализ основных технических решений…………………………………39
Глава 2. Принцип работы однокамерного и двухкамерного
холодильника………………………………………………………………….41
2.1. Принцип работы бытового двухкамерного холодильника с
лектромеханической системой управления………………………………….43
2.2. Бытовой холодильник с электронной системой управления…………..45
2.3.Постановка задачи…………………………………………………………50
Глава 3. Описание конструкции холодильника…………………………66
3.1.Устройство холодильника-морозильника……………………………………66
3.2.Электрическая схема хо¬лодильника-морозильника
«Stinol-104» КШТ-305………………………………………………………...72
Глава 4 Технологическая часть……………………………………………75
4.1 Технологические основы производства и ремонта компрессионных герметичных агрегатов………………………………………………………..75
Заключение……………………………………………………………………..80
Список литературы…………………………………………………………….81
Приложение 1. Блок-схема основной программы…………………………...83
Приложение 2. Блок-схема подпрограмы……………………………………84
Приложение 3. Функциональная схема устройства…………………………85
Приложение 4. Схема электрическая принципиальная……………………..86
Глава.1.АНАЛИТИЧЕСКАЯ ЧАСТЬ
1.1.АНАЛИЗ БЫТОВЫХ ХОЛОДИЛЬНИКОВ
Холодильные агрегаты бытовых холодильников выполняют роль холодильных машин, т. е. служат для отвода тепла из холодильной камеры и передачи его в более теплую окружающую среду. Агрегат может быть демонтирован из шкафа и заменен другим, предназначенным для холодильников данного типа. Конструкции отдельных, узлов и деталей холодильных агрегатов различных холодильников с одной холодильной камерой и дверцей могут несколько отличаться друг от друга, однако принципиальная схема их одинакова .
Холодильный процесс осуществляется следующим образом. При работе мотор-компрессора жидкий хладагент из конденсатора по капиллярной трубке подается в испаритель. При этом давление и температура жидкого хладагента понижаются за счет ограниченной пропускной способности капиллярной трубки и охлаждения холодными парами хладагента, идущими навстречу по всасывающей трубке из испарителя. При температуре – 10 – 20 С и давлении 0 –1 атм жидкий хладагент в испарителе кипит, поглощая тепло из холодильной камеры. Чтобы обеспечить постоянное кипение хладагента в испарителе при определенном давлении, холодные пары его отсасываются компрессором через всасывающую трубку. При движении паров к компрессору температура их повышается за счет теплообмена с теплым жидким хладагентом, движущимся по капиллярной трубке, и окружающей средой. При входе в кожух мотор-компрессора температура паров равна примерно 15 С.
Так как температура обмоток электродвигателя и цилиндра компрессора значительно выше 15 С, то они охлаждаются парами хладагента, что улучшает условия работы электродвигателя и компрессора в герметичном кожухе. Подогретые пары хладагента нагнетаются компрессором в конденсатор, который охлаждается воздухом окружающей среды. При этом давление паров повышается до 8 – 11 атм в зависимости от температуры окружающей среды. При таком давлении температура конденсации насыщенных паров хладагента становится выше температуры окружающего воздуха, поэтому в последних витках конденсатора пары хладагента превращаются в жидкость. Процесс конденсации паров сопровождается выделением тепла, которое отдается окружающему воздуху. Жидкий хладагент, имеющий температуру на
10 – 15 С выше температуры окружающей среды, проходит через фильтр, совмещенный с осушительным патроном, и далее по капиллярной трубке вновь поступает в испаритель. Описанный круговой холодильный процесс работы агрегата повторяется пока работает мотор-компрессор.
Список литературы.
1. Холодильная техника и технология: Учебник под ред. А.В.Руцкого.-М.:ИНФРА-М,2000.-286 с.-(Серия «Высшее образование»).
2. Свердлов Г.З., Явнель Б.К. Курсовое и дипломное проектирование холодильных установок и систем кондиционирования воздуха . – 2-е изд., перераб. и доп. – М.: Пищевая промышленность,1978 – 264 с.
3. Основы холодильной техники и холодильной технологии: Мещеряков Ф.Е.-М., 1975-изд. «Пищевая промышленность», 559 с.
4. Якобсон В.Б. Малые холодильные машины. – М.: Пищевая промышленность,1977. – 368 с.
5. Зеликовский И.Х., Каплан Л.Г.Малые холодильные машины и установки: Малые холодильные установки. – 2-е изд., перераб и доп. – М.: Пищевая промышленность,1979.–448 с.
6. Кондрашова Н.Г., Лашутина Н.Г. Холодильно-компрессорные
машины и установки. – 3-е изд., перераб. и доп. – М.: Высшая школа,1984 – 335 с.
7. Лепаев Д.А. Бытовые электроприборы. – М.: Легкая индустрия,1979 – 336с.
8. Лесников В.В. Бытовые компрессионные холодильники (методическое указание по дисциплине «Бытовые машины и приборы») Уфа 1998-47с.
9. Доссат Р.Дж. Основы холодильной техники.
Пер. с англ. – М.: Легкая и пищевая промышленность,1984 – 520 с.
10. Вейнберг Б.С. Вайн Л.Н. Бытовые компрессионные холодильники. – М.: Пищевая промышленность ,1972. – 272 с.
11. Ресурсы Internet
1. http://www.iceberg.ru/services/?action=showtable&id=485&parent=313
. http://btmax.ru/?cid=436
. http://holodilnik.tkat.ru/?mod=articles&act=full&id_article=1334
. http://www.stinol-moscow.ru/dvuhkamer.htm
. http://focus.ti.com/lit/ug/spru060d/spru060d.pdf
. http://www.compel.ru/images/catalog/386/tms320f2810-12_c2810-12.pdf
. http://ru.heating.danfoss.com/PCMPDF/pt_1000.pdf
. Бакшаев, А.М. Конспект лекций по дисциплине "Эксплуатация средств вычислительной техники"[Текст] /А.М. Бакшаев/ Киров, 2007
Купить эту работу vs Заказать новую | ||
---|---|---|
0 раз | Куплено | Выполняется индивидуально |
Не менее 40%
Исполнитель, загружая работу в «Банк готовых работ» подтверждает, что
уровень оригинальности
работы составляет не менее 40%
|
Уникальность | Выполняется индивидуально |
Сразу в личном кабинете | Доступность | Срок 1—6 дней |
1600 ₽ | Цена | от 500 ₽ |
Не подошла эта работа?
В нашей базе 149278 Курсовых работ — поможем найти подходящую