Огромное спасибо! Все отлично.
Подробнее о работе
Гарантия сервиса Автор24
Уникальность не ниже 50%
Теория вычислений и машина Тюринга
Тео́рия алгори́тмов
Тео́рия алгори́тмов — наука, изучающая общие свойства и закономерности алгоритмов и разнообразные формальные модели их представления. К задачам теории алгоритмов относятся формальное доказательство алгоритмической неразрешимости задач,асимптотический анализ сложности алгоритмов, классификация алгоритмов в соответствии с классами сложности, разработка критериев сравнительной оценки качества алгоритмов и т. п.
Возникновение теории алгоритмов
Развитие теории алгоритмов начинается с доказательства К. Гёделем теорем о неполноте формальных систем, включающих арифметику, первая из которых была доказана в 1931 г. Возникшее в связи с этими теоремами предположение о невозможности алгоритмического разрешения многих математических проблем (в частности, проблемы выводимости в исчислении предикатов) вызвало необходимость стандартизации понятия алгоритма. Первые стандартизованные варианты этого понятия были разработаны в 30-х годах XX века в работах А. Тьюринга, А. Чёрча и Э. Поста. Предложенные ими машина Тьюринга, машина Поста и лямбда-исчисление Чёрча оказались эквивалентными друг другу. Основываясь на работах Гёделя, С. Клини ввел понятие рекурсивной функции, также
Теория вычислений и машина Тюринга
Тео́рия алгори́тмов
Тео́рия алгори́тмов — наука, изучающая общие свойства и закономерности алгоритмов и разнообразные формальные модели их представления. К задачам теории алгоритмов относятся формальное доказательство алгоритмической неразрешимости задач,асимптотический анализ сложности алгоритмов, классификация алгоритмов в соответствии с классами сложности, разработка критериев сравнительной оценки качества алгоритмов и т. п.
Возникновение теории алгоритмов
Развитие теории алгоритмов начинается с доказательства К. Гёделем теорем о неполноте формальных систем, включающих арифметику, первая из которых была доказана в 1931 г. Возникшее в связи с этими теоремами предположение о невозможности алгоритмического разрешения многих математических проблем (в частности, проблемы выводимости в исчислении предикатов) вызвало необходимость стандартизации понятия алгоритма. Первые стандартизованные варианты этого понятия были разработаны в 30-х годах XX века в работах А. Тьюринга, А. Чёрча и Э. Поста. Предложенные ими машина Тьюринга, машина Поста и лямбда-исчисление Чёрча оказались эквивалентными друг другу. Основываясь на работах Гёделя, С. Клини ввел понятие рекурсивной функции, также
Теория вычислений и машина Тюринга
Тео́рия алгори́тмов
Тео́рия алгори́тмов — наука, изучающая общие свойства и закономерности алгоритмов и разнообразные формальные модели их представления. К задачам теории алгоритмов относятся формальное доказательство алгоритмической неразрешимости задач,асимптотический анализ сложности алгоритмов, классификация алгоритмов в соответствии с классами сложности, разработка критериев сравнительной оценки качества алгоритмов и т. п.
Возникновение теории алгоритмов
Развитие теории алгоритмов начинается с доказательства К. Гёделем теорем о неполноте формальных систем, включающих арифметику, первая из которых была доказана в 1931 г. Возникшее в связи с этими теоремами предположение о невозможности алгоритмического разрешения многих математических проблем (в частности, проблемы выводимости в исчислении предикатов) вызвало необходимость стандартизации понятия алгоритма. Первые стандартизованные варианты этого понятия были разработаны в 30-х годах XX века в работах А. Тьюринга, А. Чёрча и Э. Поста. Предложенные ими машина Тьюринга, машина Поста и лямбда-исчисление Чёрча оказались эквивалентными друг другу. Основываясь на работах Гёделя, С. Клини ввел понятие рекурсивной функции, также
Томас Х. Кормен, Чарльз И. Лейзерсон, Рональд Л. Ривест, Клиффорд Штайн Алгоритмы: построение и анализ = INTRODUCTION TO ALGORITHMS — 2-е изд. — М.: «Вильямс», 2006. — С. 1296. — ISBN 0-07-013151-1.
Дональд Кнут Искусство программирования, том 1. Основные алгоритмы = The Art of Computer Programming, vol.1. Fundamental Algorithms — 3-е изд. — М.: «Вильямс», 2006. — С. 720. — ISBN 0-201-89683-4.
Колмогоров А. Н. Теория информации и теория алгоритмов. — М.: Наука, 1987. — 304 с.
Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям
Теория вычислений и машина Тюринга
Тео́рия алгори́тмов
Тео́рия алгори́тмов — наука, изучающая общие свойства и закономерности алгоритмов и разнообразные формальные модели их представления. К задачам теории алгоритмов относятся формальное доказательство алгоритмической неразрешимости задач,асимптотический анализ сложности алгоритмов, классификация алгоритмов в соответствии с классами сложности, разработка критериев сравнительной оценки качества алгоритмов и т. п.
Возникновение теории алгоритмов
Развитие теории алгоритмов начинается с доказательства К. Гёделем теорем о неполноте формальных систем, включающих арифметику, первая из которых была доказана в 1931 г. Возникшее в связи с этими теоремами предположение о невозможности алгоритмического разрешения многих математических проблем (в частности, проблемы выводимости в исчислении предикатов) вызвало необходимость стандартизации понятия алгоритма. Первые стандартизованные варианты этого понятия были разработаны в 30-х годах XX века в работах А. Тьюринга, А. Чёрча и Э. Поста. Предложенные ими машина Тьюринга, машина Поста и лямбда-исчисление Чёрча оказались эквивалентными друг другу. Основываясь на работах Гёделя, С. Клини ввел понятие рекурсивной функции, также
Теория вычислений и машина Тюринга
Тео́рия алгори́тмов
Тео́рия алгори́тмов — наука, изучающая общие свойства и закономерности алгоритмов и разнообразные формальные модели их представления. К задачам теории алгоритмов относятся формальное доказательство алгоритмической неразрешимости задач,асимптотический анализ сложности алгоритмов, классификация алгоритмов в соответствии с классами сложности, разработка критериев сравнительной оценки качества алгоритмов и т. п.
Возникновение теории алгоритмов
Развитие теории алгоритмов начинается с доказательства К. Гёделем теорем о неполноте формальных систем, включающих арифметику, первая из которых была доказана в 1931 г. Возникшее в связи с этими теоремами предположение о невозможности алгоритмического разрешения многих математических проблем (в частности, проблемы выводимости в исчислении предикатов) вызвало необходимость стандартизации понятия алгоритма. Первые стандартизованные варианты этого понятия были разработаны в 30-х годах XX века в работах А. Тьюринга, А. Чёрча и Э. Поста. Предложенные ими машина Тьюринга, машина Поста и лямбда-исчисление Чёрча оказались эквивалентными друг другу. Основываясь на работах Гёделя, С. Клини ввел понятие рекурсивной функции, также
Теория вычислений и машина Тюринга
Тео́рия алгори́тмов
Тео́рия алгори́тмов — наука, изучающая общие свойства и закономерности алгоритмов и разнообразные формальные модели их представления. К задачам теории алгоритмов относятся формальное доказательство алгоритмической неразрешимости задач,асимптотический анализ сложности алгоритмов, классификация алгоритмов в соответствии с классами сложности, разработка критериев сравнительной оценки качества алгоритмов и т. п.
Возникновение теории алгоритмов
Развитие теории алгоритмов начинается с доказательства К. Гёделем теорем о неполноте формальных систем, включающих арифметику, первая из которых была доказана в 1931 г. Возникшее в связи с этими теоремами предположение о невозможности алгоритмического разрешения многих математических проблем (в частности, проблемы выводимости в исчислении предикатов) вызвало необходимость стандартизации понятия алгоритма. Первые стандартизованные варианты этого понятия были разработаны в 30-х годах XX века в работах А. Тьюринга, А. Чёрча и Э. Поста. Предложенные ими машина Тьюринга, машина Поста и лямбда-исчисление Чёрча оказались эквивалентными друг другу. Основываясь на работах Гёделя, С. Клини ввел понятие рекурсивной функции, также
Томас Х. Кормен, Чарльз И. Лейзерсон, Рональд Л. Ривест, Клиффорд Штайн Алгоритмы: построение и анализ = INTRODUCTION TO ALGORITHMS — 2-е изд. — М.: «Вильямс», 2006. — С. 1296. — ISBN 0-07-013151-1.
Дональд Кнут Искусство программирования, том 1. Основные алгоритмы = The Art of Computer Programming, vol.1. Fundamental Algorithms — 3-е изд. — М.: «Вильямс», 2006. — С. 720. — ISBN 0-201-89683-4.
Колмогоров А. Н. Теория информации и теория алгоритмов. — М.: Наука, 1987. — 304 с.
Купить эту работу vs Заказать новую | ||
---|---|---|
0 раз | Куплено | Выполняется индивидуально |
Не менее 40%
Исполнитель, загружая работу в «Банк готовых работ» подтверждает, что
уровень оригинальности
работы составляет не менее 40%
|
Уникальность | Выполняется индивидуально |
Сразу в личном кабинете | Доступность | Срок 1—4 дня |
600 ₽ | Цена | от 200 ₽ |
Не подошла эта работа?
В нашей базе 9514 Ответов на вопросы — поможем найти подходящую