5+
Подробнее о работе
Гарантия сервиса Автор24
Уникальность не ниже 50%
3. ПОДХОДЫ К АНАЛИЗУ НЕСТАЦИОНАРНЫХ СИГНАЛОВ 3.1. Методы обработки нестационарных сигналов
Большинство медицинских сигналов имеет сложные частотно-временные характеристики. Как правило, такие сигналы состоят из близких по времени, короткоживущих высокочастотных компонент и долговременных, близких по частоте низкочастотных компонент.
Для анализа таких сигналов нужен метод, способный обеспечить хорошее разрешение и по частоте, и по времени. Первое требуется для локализации низкочастотных составляющих, второе – для разрешения компонент высокой частоты.
Вейвлет преобразование стремительно завоевывает популярность в столь разных областях, как телекоммуникации, компьютерная графика, биология, астрофизика и медицина. Благодаря хорошей приспособленности к анализу нестационарных сигналов оно стало мощной альтернативой преобразованию Фурье в ряде медицинских приложений.
...
3.2 Краткий обзор преобразования Фурье
Классическим методом частотного анализа сигналов является преобразование Фурье, суть которого можно выразить формулой (1)
Результат преобразования Фурье – амплитудно-частотный спектр, по которому можно определить присутствие некоторой частоты в исследуемом сигнале.
В случае, когда не встает вопрос о локализации временного положения частот, метод Фурье дает хорошие результаты. Но при необходимости определить временной интервал присутствия частоты приходится применять другие методы.
Одним из таких методов является обобщенный метод Фурье (локальное преобразование Фурье). Этот метод состоит из следующих этапов:
1. в исследуемой функции создается “окно” – временной интервал, для которого функция f(x)¹ 0, и f(x)=0 для остальных значений;
2. для этого “окна” вычисляется преобразование Фурье
3.3 Основные положения вейвлет-анализа
Различают дискретный и непрерывный вейвлет анализ, аппарат которых можно применять как для непрерывных, так и для дискретных сигналов.
Cигнал анализируется путем разложения по базисным функциям, полученным из некоторого прототипа путем сжатий, растяжений и сдвигов (2). Функция-прототип называется анализирующим (материнским) вейвлетом.
Вейвлет - функция должна удовлетворять 2-м условиям:
1. Среднее значение (интеграл по всей прямой) равен 0.
2. Функция быстро убывает при t ® ∞.
Обычно, функция-вейвлет обозначается буквой ψ.
В общем случае вейвлет преобразование функции f(t) выглядит так:
(2)
где t – ось времени, x – момент времени, s – параметр, обратный частоте, a (*) – означает комплексно-сопряженное.
Рис 1. Примеры вейвлетов.
Главным элементом в вейвлет анализе является функция-вейвлет. Вообще говоря, вейвлетом является любая функция, отвечающая двум вышеуказанным условиям.
...
Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям
3. ПОДХОДЫ К АНАЛИЗУ НЕСТАЦИОНАРНЫХ СИГНАЛОВ 3.1. Методы обработки нестационарных сигналов
Большинство медицинских сигналов имеет сложные частотно-временные характеристики. Как правило, такие сигналы состоят из близких по времени, короткоживущих высокочастотных компонент и долговременных, близких по частоте низкочастотных компонент.
Для анализа таких сигналов нужен метод, способный обеспечить хорошее разрешение и по частоте, и по времени. Первое требуется для локализации низкочастотных составляющих, второе – для разрешения компонент высокой частоты.
Вейвлет преобразование стремительно завоевывает популярность в столь разных областях, как телекоммуникации, компьютерная графика, биология, астрофизика и медицина. Благодаря хорошей приспособленности к анализу нестационарных сигналов оно стало мощной альтернативой преобразованию Фурье в ряде медицинских приложений.
...
3.2 Краткий обзор преобразования Фурье
Классическим методом частотного анализа сигналов является преобразование Фурье, суть которого можно выразить формулой (1)
Результат преобразования Фурье – амплитудно-частотный спектр, по которому можно определить присутствие некоторой частоты в исследуемом сигнале.
В случае, когда не встает вопрос о локализации временного положения частот, метод Фурье дает хорошие результаты. Но при необходимости определить временной интервал присутствия частоты приходится применять другие методы.
Одним из таких методов является обобщенный метод Фурье (локальное преобразование Фурье). Этот метод состоит из следующих этапов:
1. в исследуемой функции создается “окно” – временной интервал, для которого функция f(x)¹ 0, и f(x)=0 для остальных значений;
2. для этого “окна” вычисляется преобразование Фурье
3.3 Основные положения вейвлет-анализа
Различают дискретный и непрерывный вейвлет анализ, аппарат которых можно применять как для непрерывных, так и для дискретных сигналов.
Cигнал анализируется путем разложения по базисным функциям, полученным из некоторого прототипа путем сжатий, растяжений и сдвигов (2). Функция-прототип называется анализирующим (материнским) вейвлетом.
Вейвлет - функция должна удовлетворять 2-м условиям:
1. Среднее значение (интеграл по всей прямой) равен 0.
2. Функция быстро убывает при t ® ∞.
Обычно, функция-вейвлет обозначается буквой ψ.
В общем случае вейвлет преобразование функции f(t) выглядит так:
(2)
где t – ось времени, x – момент времени, s – параметр, обратный частоте, a (*) – означает комплексно-сопряженное.
Рис 1. Примеры вейвлетов.
Главным элементом в вейвлет анализе является функция-вейвлет. Вообще говоря, вейвлетом является любая функция, отвечающая двум вышеуказанным условиям.
...
Купить эту работу vs Заказать новую | ||
---|---|---|
0 раз | Куплено | Выполняется индивидуально |
Не менее 40%
Исполнитель, загружая работу в «Банк готовых работ» подтверждает, что
уровень оригинальности
работы составляет не менее 40%
|
Уникальность | Выполняется индивидуально |
Сразу в личном кабинете | Доступность | Срок 1—4 дня |
200 ₽ | Цена | от 200 ₽ |
Не подошла эта работа?
В нашей базе 85108 Рефератов — поможем найти подходящую