Вроде все хорошо
Подробнее о работе
Гарантия сервиса Автор24
Уникальность не ниже 50%
Динамическое напряжение (Па) определяется по формуле
σd=σstKd,
гдеσst – напряжение от статического приложения груза, Па;
Kd – динамический коэффициент.
Максимальное нормальное напряжение при статическом изгибе
σst=MxmaxWx,
гдеMxmax – максимальный (по модулю) изгибающий момент, Нм;
Wx – момент сопротивления сечения относительно оси x, м3.
Реакции опор от статического приложения груза (веса двигателя и силы инерции; рис. 6.2):
MB=0, -H+Q∙l3+RC∙l=0; RC=H+Q3=183=6 кН;
MC=0, H+Q∙2l3-RB∙l=0; RB=3∙H+Q3=2∙183=12 кН.
На основании рассчитанных значений строится эпюра изгибающего момента (рис. 7.2). Максимальный момент (под точкой приложения силы)
Mxmax=RB∙l3=12∙1,43=5,6 кНм.
Справочный момент сопротивления для двутавра № 20 Wx=184 см3. Тогда (с учетом установки двух двутавров)
σst=5,6∙1032∙184∙10-6=
Отсутствует
На двух балках двутаврового сечения установлен двигатель весом Q делающий n оборотов в минуту (рис. 7.1). Центробежная сила инерции, возникающая вследствие неуравновешенности вращающихся частей двигателя, равна H. Собственный вес балок и силы сопротивления не учитывать.
Требуется определить наибольшее нормальное напряжение в балках.
Рисунок 7.1
Заданные величины
длина пролета l=1,4 м;
номер двутавра 20;
центробежная сила H=4 кН;
частота вращения n=550 обмин.
Отсутствует
Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям
Динамическое напряжение (Па) определяется по формуле
σd=σstKd,
гдеσst – напряжение от статического приложения груза, Па;
Kd – динамический коэффициент.
Максимальное нормальное напряжение при статическом изгибе
σst=MxmaxWx,
гдеMxmax – максимальный (по модулю) изгибающий момент, Нм;
Wx – момент сопротивления сечения относительно оси x, м3.
Реакции опор от статического приложения груза (веса двигателя и силы инерции; рис. 6.2):
MB=0, -H+Q∙l3+RC∙l=0; RC=H+Q3=183=6 кН;
MC=0, H+Q∙2l3-RB∙l=0; RB=3∙H+Q3=2∙183=12 кН.
На основании рассчитанных значений строится эпюра изгибающего момента (рис. 7.2). Максимальный момент (под точкой приложения силы)
Mxmax=RB∙l3=12∙1,43=5,6 кНм.
Справочный момент сопротивления для двутавра № 20 Wx=184 см3. Тогда (с учетом установки двух двутавров)
σst=5,6∙1032∙184∙10-6=
Отсутствует
На двух балках двутаврового сечения установлен двигатель весом Q делающий n оборотов в минуту (рис. 7.1). Центробежная сила инерции, возникающая вследствие неуравновешенности вращающихся частей двигателя, равна H. Собственный вес балок и силы сопротивления не учитывать.
Требуется определить наибольшее нормальное напряжение в балках.
Рисунок 7.1
Заданные величины
длина пролета l=1,4 м;
номер двутавра 20;
центробежная сила H=4 кН;
частота вращения n=550 обмин.
Отсутствует
Купить эту работу vs Заказать новую | ||
---|---|---|
1 раз | Куплено | Выполняется индивидуально |
Не менее 40%
Исполнитель, загружая работу в «Банк готовых работ» подтверждает, что
уровень оригинальности
работы составляет не менее 40%
|
Уникальность | Выполняется индивидуально |
Сразу в личном кабинете | Доступность | Срок 1—4 дня |
140 ₽ | Цена | от 20 ₽ |
Не подошла эта работа?
В нашей базе 23423 Решения задач — поможем найти подходящую