Автор24

Информация о работе

Подробнее о работе

Страница работы

Построение классификационной модели на основе кластерного анализа с использованием машинного обучения»

  • 75 страниц
  • 2021 год
  • 9 просмотров
  • 0 покупок
Автор работы

МARGOSHA88

Помогу написать различные виды работ (курсовые, дипломные и т.д)

900 ₽

Работа будет доступна в твоём личном кабинете после покупки

Гарантия сервиса Автор24

Уникальность не ниже 50%

Фрагменты работ

Мировой опыт применения алгоритма машинного обучения предполагает приведение решаемой задачи к одному из стандартных типов (классификации, регрессии, кластеризации, аффинитивного анализа, оптимизации, поиска аномалий и т.д.) [1], [12], [24]. С каждым типом решаемой задачи связан свой список алгоритмов машинного обучения предназначенных для их решения. Поэтому перспективным направлением в области машинного обучения является развитие технологий прекрасного использования алгоритмов, расширяющих области применения (применение в других типах задач) уже существующих алгоритмов.

Введение 3
1 Анализ путей совершенствования алгоритмов машинного обучения 6
1.1 Анализ данных с использованием машинного обучения 6
1.2 Сравнительный анализ алгоритмов для классификации объектов на изображении 14
1.3 Пути развития технологий машинного обучения 19
2 Разработка технологии классификации данных на основе алгоритма k- means 24
2.1 Математический аппарат метрических алгоритмов кластеризации 24
2.2 Способ построения классификатора и классификации данных на основе результатов кластерного анализа 31
3 Проведение тестирования предложенных подходов 38
3.1 Программной реализация алгоритма построения классификатора и классификации данных на основе алгоритма k-means 38
3.2 Вычислительный эксперимент на наборе данных «Fisher's Iris» 50
3.3 Вычислительный эксперимент на наборе данных «Machine» 56
3.4 Вычислительный эксперимент на наборе данных «DryBean» 60
Заключение 67
Список используемой литературы 69

Цель исследования – разработка и тестирование концепции использования алгоритма k-means для решения задач классификации данных. Гипотеза исследования состоит в том, что возможно построение эффективного классификатора данных на основе результатов кластерного
анализа, полученных с помощью алгоритма k-means.

1. Алифбекова, Н.Р. Сравнительный анализ алгоритмов распознавания человеческого лица / Н.Р. Алифбекова, А.В. Рытов // Сборник статей Всероссийской студенческой научно-практической междисциплинарной конференции «Молодежь. Наука. Общество». 2020. – Тольяттинский государственный университет, 2020. – с. 38-41. – Текст : непосредственный.
2. Власов, А.В. Машинное обучение применительно к задаче классификации семян зерновых культур в видеопотоке / А.В. Власов, А.С. Федеев // Молодежь и современные информационные технологии – сборник трудов XIV Международной научно-практической конференции студентов, аспирантов и молодых учёных, 07–11 ноября 2016. – Национальный исследовательский Томский политехнический университет (Томск), 2016. – с. 133-135. – Текст : непосредственный.
3. Клячин В.Н. Использование агрегированных классификаторов при технической диагностике на базе машинного обучения / В.Н. Клячин, Ю.Е. Кувайскова, Д.А. Жуков // Информационные технологии и нанотехнологии (ИТНТ-2017) – сборник трудов III международной конференции и молодежной школы. Самарский национальный исследовательский университет имени академика С.П. Королева. 2017. – Предприятие "Новая техника" (Самара), 2017. – с. 1770-1773. – Текст : непосредственный.
4. Кононова, Н.В. Исследование подсистемы контентной фильтрации с использованием методов машинного обучения / Н.В. Кононова, Ю.А. Андрусенко, Т.А. Самокаева // Студенческая наука для развития информационного общества – сборник материалов VI Всероссийской научно-технической конференции. 22–26 мая 2017. – Северо-Кавказский федеральный университет (Ставрополь), 2017. – с. 268-270. – Текст :
непосредственный.

5. Мелдебай, М.А. Анализ мнений покупателей на основе машинного обучения / М.А. Мелдебай, А.К. Сарбасова // Прикладная математика и информатика: современные исследования в области естественных и технических наук – материалы III научно-практической всероссийской конференции (школы-семинара) молодых ученых. 24–25 апреля 2017 года. – Издатель Качалин Александр Васильевич, 2017. – с. 360-
363. – Текст : непосредственный.
6. Наумов, Д.П. Регулятор CAP на основе машинного обучения / Д.П. Наумов, Д.П. Стариков // Информационные технологии в управлении, автоматизации и мехатронике – сборник научных трудов Международной научно-технической конференции. 06–07 апреля 2017 года. – ЗАО "Университетская книга" (Курск), 2017. – с. 106-114. – Текст : непосредственный.
7. Осколков, В.М. Использование метода машинного обучения для повышения продуктивности на предприятии / В.М. Осколков, Н.И. Шаханов, И.А. Варфоломеев, О.В. Юдина, Е.В. Ершов // Автоматизация и энергосбережение машиностроительного и металлургического производств, технология и надежность машин, приборов и оборудования – материалы XII Международной научно-технической конференции, 21 марта 2017. – Вологодский государственный университет (Вологда), 2017. – с. 177-180. – Текст : непосредственный.

Форма заказа новой работы

Не подошла эта работа?

Закажи новую работу, сделанную по твоим требованиям

Оставляя свои контактные данные и нажимая «Заказать Выпускную квалификационную работу», я соглашаюсь пройти процедуру регистрации на Платформе, принимаю условия Пользовательского соглашения и Политики конфиденциальности в целях заключения соглашения.

Фрагменты работ

Мировой опыт применения алгоритма машинного обучения предполагает приведение решаемой задачи к одному из стандартных типов (классификации, регрессии, кластеризации, аффинитивного анализа, оптимизации, поиска аномалий и т.д.) [1], [12], [24]. С каждым типом решаемой задачи связан свой список алгоритмов машинного обучения предназначенных для их решения. Поэтому перспективным направлением в области машинного обучения является развитие технологий прекрасного использования алгоритмов, расширяющих области применения (применение в других типах задач) уже существующих алгоритмов.

Введение 3
1 Анализ путей совершенствования алгоритмов машинного обучения 6
1.1 Анализ данных с использованием машинного обучения 6
1.2 Сравнительный анализ алгоритмов для классификации объектов на изображении 14
1.3 Пути развития технологий машинного обучения 19
2 Разработка технологии классификации данных на основе алгоритма k- means 24
2.1 Математический аппарат метрических алгоритмов кластеризации 24
2.2 Способ построения классификатора и классификации данных на основе результатов кластерного анализа 31
3 Проведение тестирования предложенных подходов 38
3.1 Программной реализация алгоритма построения классификатора и классификации данных на основе алгоритма k-means 38
3.2 Вычислительный эксперимент на наборе данных «Fisher's Iris» 50
3.3 Вычислительный эксперимент на наборе данных «Machine» 56
3.4 Вычислительный эксперимент на наборе данных «DryBean» 60
Заключение 67
Список используемой литературы 69

Цель исследования – разработка и тестирование концепции использования алгоритма k-means для решения задач классификации данных. Гипотеза исследования состоит в том, что возможно построение эффективного классификатора данных на основе результатов кластерного
анализа, полученных с помощью алгоритма k-means.

1. Алифбекова, Н.Р. Сравнительный анализ алгоритмов распознавания человеческого лица / Н.Р. Алифбекова, А.В. Рытов // Сборник статей Всероссийской студенческой научно-практической междисциплинарной конференции «Молодежь. Наука. Общество». 2020. – Тольяттинский государственный университет, 2020. – с. 38-41. – Текст : непосредственный.
2. Власов, А.В. Машинное обучение применительно к задаче классификации семян зерновых культур в видеопотоке / А.В. Власов, А.С. Федеев // Молодежь и современные информационные технологии – сборник трудов XIV Международной научно-практической конференции студентов, аспирантов и молодых учёных, 07–11 ноября 2016. – Национальный исследовательский Томский политехнический университет (Томск), 2016. – с. 133-135. – Текст : непосредственный.
3. Клячин В.Н. Использование агрегированных классификаторов при технической диагностике на базе машинного обучения / В.Н. Клячин, Ю.Е. Кувайскова, Д.А. Жуков // Информационные технологии и нанотехнологии (ИТНТ-2017) – сборник трудов III международной конференции и молодежной школы. Самарский национальный исследовательский университет имени академика С.П. Королева. 2017. – Предприятие "Новая техника" (Самара), 2017. – с. 1770-1773. – Текст : непосредственный.
4. Кононова, Н.В. Исследование подсистемы контентной фильтрации с использованием методов машинного обучения / Н.В. Кононова, Ю.А. Андрусенко, Т.А. Самокаева // Студенческая наука для развития информационного общества – сборник материалов VI Всероссийской научно-технической конференции. 22–26 мая 2017. – Северо-Кавказский федеральный университет (Ставрополь), 2017. – с. 268-270. – Текст :
непосредственный.

5. Мелдебай, М.А. Анализ мнений покупателей на основе машинного обучения / М.А. Мелдебай, А.К. Сарбасова // Прикладная математика и информатика: современные исследования в области естественных и технических наук – материалы III научно-практической всероссийской конференции (школы-семинара) молодых ученых. 24–25 апреля 2017 года. – Издатель Качалин Александр Васильевич, 2017. – с. 360-
363. – Текст : непосредственный.
6. Наумов, Д.П. Регулятор CAP на основе машинного обучения / Д.П. Наумов, Д.П. Стариков // Информационные технологии в управлении, автоматизации и мехатронике – сборник научных трудов Международной научно-технической конференции. 06–07 апреля 2017 года. – ЗАО "Университетская книга" (Курск), 2017. – с. 106-114. – Текст : непосредственный.
7. Осколков, В.М. Использование метода машинного обучения для повышения продуктивности на предприятии / В.М. Осколков, Н.И. Шаханов, И.А. Варфоломеев, О.В. Юдина, Е.В. Ершов // Автоматизация и энергосбережение машиностроительного и металлургического производств, технология и надежность машин, приборов и оборудования – материалы XII Международной научно-технической конференции, 21 марта 2017. – Вологодский государственный университет (Вологда), 2017. – с. 177-180. – Текст : непосредственный.

Купить эту работу

Построение классификационной модели на основе кластерного анализа с использованием машинного обучения»

900 ₽

или заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 3000 ₽

Гарантии Автор24

Изображения работ

Страница работы
Страница работы
Страница работы

Понравилась эта работа?

или

6 ноября 2021 заказчик разместил работу

Выбранный эксперт:

Автор работы
МARGOSHA88
4.1
Помогу написать различные виды работ (курсовые, дипломные и т.д)
Купить эту работу vs Заказать новую
0 раз Куплено Выполняется индивидуально
Не менее 40%
Исполнитель, загружая работу в «Банк готовых работ» подтверждает, что уровень оригинальности работы составляет не менее 40%
Уникальность Выполняется индивидуально
Сразу в личном кабинете Доступность Срок 1—6 дней
900 ₽ Цена от 3000 ₽

5 Похожих работ

Выпускная квалификационная работа (ВКР)

Операционные системы и платформы

Уникальность: от 40%
Доступность: сразу
3000 ₽
Выпускная квалификационная работа (ВКР)

Автоматизированная система для заказа медицинского оборудования

Уникальность: от 40%
Доступность: сразу
6000 ₽
Выпускная квалификационная работа (ВКР)

Автоматизация документооборота организации ООО ЧОП "Сайга"

Уникальность: от 40%
Доступность: сразу
990 ₽
Выпускная квалификационная работа (ВКР)

Пименение электронных образовательных ресурсов в обучении ВКР

Уникальность: от 40%
Доступность: сразу
2000 ₽
Выпускная квалификационная работа (ВКР)

АВТОМАТИЗИРОВАННОЕ РАБОЧЕЕ МЕСТО МЕНЕДЖЕРА

Уникальность: от 40%
Доступность: сразу
5000 ₽

другие учебные работы по предмету

Готовая работа

Проектирование информационной системы для контроля обеспечения работ компании «Interfere»

Уникальность: от 40%
Доступность: сразу
1200 ₽
Готовая работа

Разработка и испытание ПО по моделям

Уникальность: от 40%
Доступность: сразу
1490 ₽
Готовая работа

персональная программа начальника отдела производства (на примере ООО"Вселуг")

Уникальность: от 40%
Доступность: сразу
2800 ₽
Готовая работа

Особые точки функций комплексного переменного и их изучение с помощью Maple

Уникальность: от 40%
Доступность: сразу
2240 ₽
Готовая работа

Контроль логических интегральных микросхем (+ доклад)

Уникальность: от 40%
Доступность: сразу
1000 ₽
Готовая работа

Внедрение системы управления освещением умного дома.

Уникальность: от 40%
Доступность: сразу
2800 ₽
Готовая работа

Автоматизированная система складского учета

Уникальность: от 40%
Доступность: сразу
3000 ₽
Готовая работа

оптимизация торгово-закупочной деятельности

Уникальность: от 40%
Доступность: сразу
2800 ₽
Готовая работа

безопасность беспроводных сетей

Уникальность: от 40%
Доступность: сразу
3300 ₽
Готовая работа

Распознование плоских многопредметных изображений

Уникальность: от 40%
Доступность: сразу
2800 ₽
Готовая работа

Методика обучения будущих учителей информатики проектированию локальных компьютерных сетей

Уникальность: от 40%
Доступность: сразу
2800 ₽
Готовая работа

Разработка системы мониторинга компьютерной сети

Уникальность: от 40%
Доступность: сразу
2500 ₽