Автор24

Информация о работе

Подробнее о работе

Страница работы

ВКР Исследование методов распознавания лиц по фотографиям

  • 45 страниц
  • 2021 год
  • 7 просмотров
  • 0 покупок
Автор работы

user5741222

2000 ₽

Работа будет доступна в твоём личном кабинете после покупки

Гарантия сервиса Автор24

Уникальность не ниже 50%

Фрагменты работ

Целью данной работы является оценка эффективности автоматического распознавания лиц по сравнению с возможностями человеческого восприятия, а также исследование и применение на практике различных методов машинного обучения.

В первой части описано понятие биометрии и биометрических данных, дано описание их использования повседневной в жизни, проведено сравнение метода распознавания лиц с другими методами получения биометрических данных.

Вторая часть посвящена описанию методов машинного обучения. В ней рассмотрены основные их них, приведены принципы работы данных методов и объяснен способ их действия.

Третья часть включает в себя экспериментальное исследование,

опирающееся на теоретические данные предыдущих глав. На практике

Введение ...................................................................................................................................................... 4 1. Значение и применение биометрии в современном мире .............................................................. 6

1.1. Понятие биометрии и биометрических данных ...................................................................... 6 1.2. Использование биометрических данных в повседневной жизни ............................................ 9 1.3. Преимущества биометрического распознания лиц в сравнении с другими

биометрическими методами ............................................................................................................ 12 1.4. Процесс захвата изображения и компоненты систем распознавания лиц ....................... 14

2. Обзор методов для автоматического распознавания лиц ........................................................... 19 2.1. Расширенный метод 2-D PCA для распознавания лиц ........................................................... 19 2.2. Модель распознавания лиц на основе ковариационного слияния с использованием

ковариационных пересечений (Covariance fusion using covariance intersection) ......................... 23 2.3. Распознание лиц на основе PCA и генетических алгоритмах .............................................. 28

3. Постановка задачи и экспериментальные исследования ........................................................... 35 3.1. Постановка задачи ....................................................................................................................... 35 3.2. Программная реализация ............................................................................................................ 35

Заключение ............................................................................................................................................... 39 Список литературы ................................................................................................................................ 40 Приложение 1. Программный код ....................................................................................................... 42

Оригинальность по АП.Вуз на 11 февраля 2023 года более 70%.

В настоящее время имеется большое количество возможностей в области разработки программного обеспечения. В различные сферы жизни быстро внедряются автоматизированные процессы и программы, упрощающие работу многим специалистам. К ним относятся и биометрические системы, которые позволяют повысить уровень безопасности и облегчить распознавание лиц.


реализована программа, выполняющая распознавание лиц. При ее разработке были использованы техники машинного зрения и глубокого обучения.


Дипломная работа посвящена анализу использования биометрических данных и исследованию методов распознавания лиц по фотографиям, что очень актуально на данный момент в связи с быстрым развитием технологий и их частым использованием в повседневной жизни.

1. W. Zhao, R. Chellappa, P.J. Phillips, and A. Rosenfeld, ACM Comp. Surv. 35,

399 (2003).

2. M. Kirby, L. Sirovich, IEEE Trans Patt. Anal. Mach. Intel. 12, 103 (1990).

3. S.G. Kong, J. Heo, B.R. Abidi, J. Paik, and M.A. Abidi, Comp. Vis.

Image Understanding 97, 103 (2005).

4. A. F. Abate, M. Nappi, D. Riccio, and G. Sabatino, Pattern Recognition Letters

28, 1885 (2007).

5. M. Turk and A. Pentland, J. Cogn. Neuro. 3, 71 (1991).

6. R. Gottumukkal and V.K. Asari, Patt. Recog. Lett. 25, 429 (2004).

7. I. Gauthier, N. K. Logothetis. Is face recognition not so unique after all?

(2000).

8. J. Sergent. Microgenesis of Face Perception (1986).

9. R. Chellappa, C.L. Wilson, S. Sirohey. Human and machine recognition of

faces: A survey. Proc. IEEE 83 (5) (1995).

10. S. T. Roweis, L. K. Saul. Nonlinear dimensionality reduction by locally linear

embedding (2000).

11. M. Belkin, P. Niyogi. Laplacian eigenmaps and spectral techniques for

embedding and clustering. In Advances in neural information processing

systems (2002).

12. Z. J. Tan, S. J. Chen. Electrostatic correlations and fluctuations for ion binding

to a finite length polyelectrolyte (2005).

13. W. A. Barrett, Syst. and Comp. 1, 301 (1998).

14. J. L. Center Jr., Proceedings of the NATO Advanced Study Institute on Face Recognition: From Theory to Applications, 23, June 1997 (Stirling, UK) pp 402-408.

15. A. Pentland and T. Choudhury, IEEE Computer 33, 50 (2000).

16. A. Samal and P. A. Iyengar, Patt. Recog. 25, 65 (1992).

17. I.T. Jolliffe, Principal Component Analysis, Springer, New York (1986).

18. M. Lòeve, Probability Theory, Van Nostrand, Princeton (1955).

19. L. Sirovich and M. Kirby, J. of Opt. Soc. of Amer 4, 519 (1987).

20. S. Bartlettm, J. R. Movellan, and T. J. Sejnowski, IEEE Trans. Neu. Net. 13,

1450 (2002).

21. H. Kong, X. Li, L. Wang, E.K. Teoh, J.-G.Wang, and R. Venkateswarlu,

Proceedings IEEE International Joint Conference on Neural Networks, 31, July 2005, (Montreal, Canada) pp 108-113.

22. G. L. Marcialis and F. Roli, Patt. Anal. Appl. 7, 151 (2004).

23. A. M. Martinez and A. C. Kak, IEEE Trans Patt. Anal. Mach. Intel. 23, 228

(2001).

24. A. Pentland, B. Moghaddam, and T. Starner, Proceedings of Computer Vision

and Pattern Recognition, 21, June 1994 (Seattle, USA) pp84-91.

25. G. Giacinto, F. Roli, and G. Fumera, IEEE International Joint Conference on

Neural Network, 24, July 2000 (Como, Italy), pp155-159.

26. T.K. Ho, J.J. Hull, and S.N. Srihari, IEEE Trans Patt. Anal. Mach. Intell. 16, 66

(1994).

27. J. Kittler, M. Hatef, R.P.W. Duin, and J. Matas, IEEE Trans Patt. Anal. Mach.

Intel. 20, 226 (1998).

28. M. J. Aitkenheada and A. J. S. Mcdonald, Eng. Appl. Artif. Intel. 16, 167 (2003).

29. Журавлев Ю.И. Об алгебраических методах в задачах распознавания и

классификации. − Распознавание. Классификация. Прогноз.

Математические методы и их применение. Вып. 1. – М.: Наука. 1989.

30. Журавлев Ю.И., Гуревич И.Б. Распознавание образов и распознавание изображений. − Распознавание, классификация, прогноз. Математические

методы и их применение. Вып. 2. – М.: Наука, 1989.

Форма заказа новой работы

Не подошла эта работа?

Закажи новую работу, сделанную по твоим требованиям

Оставляя свои контактные данные и нажимая «Заказать Выпускную квалификационную работу», я соглашаюсь пройти процедуру регистрации на Платформе, принимаю условия Пользовательского соглашения и Политики конфиденциальности в целях заключения соглашения.

Фрагменты работ

Целью данной работы является оценка эффективности автоматического распознавания лиц по сравнению с возможностями человеческого восприятия, а также исследование и применение на практике различных методов машинного обучения.

В первой части описано понятие биометрии и биометрических данных, дано описание их использования повседневной в жизни, проведено сравнение метода распознавания лиц с другими методами получения биометрических данных.

Вторая часть посвящена описанию методов машинного обучения. В ней рассмотрены основные их них, приведены принципы работы данных методов и объяснен способ их действия.

Третья часть включает в себя экспериментальное исследование,

опирающееся на теоретические данные предыдущих глав. На практике

Введение ...................................................................................................................................................... 4 1. Значение и применение биометрии в современном мире .............................................................. 6

1.1. Понятие биометрии и биометрических данных ...................................................................... 6 1.2. Использование биометрических данных в повседневной жизни ............................................ 9 1.3. Преимущества биометрического распознания лиц в сравнении с другими

биометрическими методами ............................................................................................................ 12 1.4. Процесс захвата изображения и компоненты систем распознавания лиц ....................... 14

2. Обзор методов для автоматического распознавания лиц ........................................................... 19 2.1. Расширенный метод 2-D PCA для распознавания лиц ........................................................... 19 2.2. Модель распознавания лиц на основе ковариационного слияния с использованием

ковариационных пересечений (Covariance fusion using covariance intersection) ......................... 23 2.3. Распознание лиц на основе PCA и генетических алгоритмах .............................................. 28

3. Постановка задачи и экспериментальные исследования ........................................................... 35 3.1. Постановка задачи ....................................................................................................................... 35 3.2. Программная реализация ............................................................................................................ 35

Заключение ............................................................................................................................................... 39 Список литературы ................................................................................................................................ 40 Приложение 1. Программный код ....................................................................................................... 42

Оригинальность по АП.Вуз на 11 февраля 2023 года более 70%.

В настоящее время имеется большое количество возможностей в области разработки программного обеспечения. В различные сферы жизни быстро внедряются автоматизированные процессы и программы, упрощающие работу многим специалистам. К ним относятся и биометрические системы, которые позволяют повысить уровень безопасности и облегчить распознавание лиц.


реализована программа, выполняющая распознавание лиц. При ее разработке были использованы техники машинного зрения и глубокого обучения.


Дипломная работа посвящена анализу использования биометрических данных и исследованию методов распознавания лиц по фотографиям, что очень актуально на данный момент в связи с быстрым развитием технологий и их частым использованием в повседневной жизни.

1. W. Zhao, R. Chellappa, P.J. Phillips, and A. Rosenfeld, ACM Comp. Surv. 35,

399 (2003).

2. M. Kirby, L. Sirovich, IEEE Trans Patt. Anal. Mach. Intel. 12, 103 (1990).

3. S.G. Kong, J. Heo, B.R. Abidi, J. Paik, and M.A. Abidi, Comp. Vis.

Image Understanding 97, 103 (2005).

4. A. F. Abate, M. Nappi, D. Riccio, and G. Sabatino, Pattern Recognition Letters

28, 1885 (2007).

5. M. Turk and A. Pentland, J. Cogn. Neuro. 3, 71 (1991).

6. R. Gottumukkal and V.K. Asari, Patt. Recog. Lett. 25, 429 (2004).

7. I. Gauthier, N. K. Logothetis. Is face recognition not so unique after all?

(2000).

8. J. Sergent. Microgenesis of Face Perception (1986).

9. R. Chellappa, C.L. Wilson, S. Sirohey. Human and machine recognition of

faces: A survey. Proc. IEEE 83 (5) (1995).

10. S. T. Roweis, L. K. Saul. Nonlinear dimensionality reduction by locally linear

embedding (2000).

11. M. Belkin, P. Niyogi. Laplacian eigenmaps and spectral techniques for

embedding and clustering. In Advances in neural information processing

systems (2002).

12. Z. J. Tan, S. J. Chen. Electrostatic correlations and fluctuations for ion binding

to a finite length polyelectrolyte (2005).

13. W. A. Barrett, Syst. and Comp. 1, 301 (1998).

14. J. L. Center Jr., Proceedings of the NATO Advanced Study Institute on Face Recognition: From Theory to Applications, 23, June 1997 (Stirling, UK) pp 402-408.

15. A. Pentland and T. Choudhury, IEEE Computer 33, 50 (2000).

16. A. Samal and P. A. Iyengar, Patt. Recog. 25, 65 (1992).

17. I.T. Jolliffe, Principal Component Analysis, Springer, New York (1986).

18. M. Lòeve, Probability Theory, Van Nostrand, Princeton (1955).

19. L. Sirovich and M. Kirby, J. of Opt. Soc. of Amer 4, 519 (1987).

20. S. Bartlettm, J. R. Movellan, and T. J. Sejnowski, IEEE Trans. Neu. Net. 13,

1450 (2002).

21. H. Kong, X. Li, L. Wang, E.K. Teoh, J.-G.Wang, and R. Venkateswarlu,

Proceedings IEEE International Joint Conference on Neural Networks, 31, July 2005, (Montreal, Canada) pp 108-113.

22. G. L. Marcialis and F. Roli, Patt. Anal. Appl. 7, 151 (2004).

23. A. M. Martinez and A. C. Kak, IEEE Trans Patt. Anal. Mach. Intel. 23, 228

(2001).

24. A. Pentland, B. Moghaddam, and T. Starner, Proceedings of Computer Vision

and Pattern Recognition, 21, June 1994 (Seattle, USA) pp84-91.

25. G. Giacinto, F. Roli, and G. Fumera, IEEE International Joint Conference on

Neural Network, 24, July 2000 (Como, Italy), pp155-159.

26. T.K. Ho, J.J. Hull, and S.N. Srihari, IEEE Trans Patt. Anal. Mach. Intell. 16, 66

(1994).

27. J. Kittler, M. Hatef, R.P.W. Duin, and J. Matas, IEEE Trans Patt. Anal. Mach.

Intel. 20, 226 (1998).

28. M. J. Aitkenheada and A. J. S. Mcdonald, Eng. Appl. Artif. Intel. 16, 167 (2003).

29. Журавлев Ю.И. Об алгебраических методах в задачах распознавания и

классификации. − Распознавание. Классификация. Прогноз.

Математические методы и их применение. Вып. 1. – М.: Наука. 1989.

30. Журавлев Ю.И., Гуревич И.Б. Распознавание образов и распознавание изображений. − Распознавание, классификация, прогноз. Математические

методы и их применение. Вып. 2. – М.: Наука, 1989.

Купить эту работу

ВКР Исследование методов распознавания лиц по фотографиям

2000 ₽

или заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 3000 ₽

Гарантии Автор24

Изображения работ

Страница работы
Страница работы
Страница работы

Понравилась эта работа?

или

11 февраля 2023 заказчик разместил работу

Выбранный эксперт:

Автор работы
user5741222
4
Купить эту работу vs Заказать новую
0 раз Куплено Выполняется индивидуально
Не менее 40%
Исполнитель, загружая работу в «Банк готовых работ» подтверждает, что уровень оригинальности работы составляет не менее 40%
Уникальность Выполняется индивидуально
Сразу в личном кабинете Доступность Срок 1—6 дней
2000 ₽ Цена от 3000 ₽

5 Похожих работ

Выпускная квалификационная работа

Операционные системы и платформы

Уникальность: от 40%
Доступность: сразу
3000 ₽
Выпускная квалификационная работа

Автоматизированная система для заказа медицинского оборудования

Уникальность: от 40%
Доступность: сразу
6000 ₽
Выпускная квалификационная работа

Автоматизация документооборота организации ООО ЧОП "Сайга"

Уникальность: от 40%
Доступность: сразу
990 ₽
Выпускная квалификационная работа

Пименение электронных образовательных ресурсов в обучении ВКР

Уникальность: от 40%
Доступность: сразу
2000 ₽
Выпускная квалификационная работа

АВТОМАТИЗИРОВАННОЕ РАБОЧЕЕ МЕСТО МЕНЕДЖЕРА

Уникальность: от 40%
Доступность: сразу
5000 ₽

другие учебные работы по предмету

Готовая работа

Разработка АИС учета кадров

Уникальность: от 40%
Доступность: сразу
2800 ₽
Готовая работа

Проектирование информационной системы для контроля обеспечения работ компании «Interfere»

Уникальность: от 40%
Доступность: сразу
1200 ₽
Готовая работа

Разработка и испытание ПО по моделям

Уникальность: от 40%
Доступность: сразу
1490 ₽
Готовая работа

персональная программа начальника отдела производства (на примере ООО"Вселуг")

Уникальность: от 40%
Доступность: сразу
2800 ₽
Готовая работа

Особые точки функций комплексного переменного и их изучение с помощью Maple

Уникальность: от 40%
Доступность: сразу
2240 ₽
Готовая работа

Контроль логических интегральных микросхем (+ доклад)

Уникальность: от 40%
Доступность: сразу
1000 ₽
Готовая работа

Внедрение системы управления освещением умного дома.

Уникальность: от 40%
Доступность: сразу
2800 ₽
Готовая работа

Автоматизированная система складского учета

Уникальность: от 40%
Доступность: сразу
3000 ₽
Готовая работа

диплом Разработка системы автоматизации документооборота

Уникальность: от 40%
Доступность: сразу
2000 ₽
Готовая работа

диплом Интеллектуальные системы. Управления данными в интеллектуальных системах

Уникальность: от 40%
Доступность: сразу
1700 ₽
Готовая работа

оптимизация торгово-закупочной деятельности

Уникальность: от 40%
Доступность: сразу
2800 ₽
Готовая работа

безопасность беспроводных сетей

Уникальность: от 40%
Доступность: сразу
3300 ₽