все хорошо
Подробнее о работе
Гарантия сервиса Автор24
Уникальность не ниже 50%
1. Вероятность того, что в страховую компанию (СК) в течение года обратится с иском о возмещении ущерба первый клиент, равна (15+k)/100. Для второго клиента вероятность такого обращения равна (20+ k)/100. Для третьего клиента - (10+k)/100. Найдите вероятность того, что в течение года в СК обратится хотя бы один клиент, если обращения клиентов - события независимые.
2. В магазин поступают телевизоры с трех заводов: (30+k)% с первого завода, (25+k)% - со второго, остальные с третьего. При этом первый завод выпускает (20+ k)% телевизоров со скрытым дефектом, второй, соответственно, (10+ k)%, а третий - (15+ k)%. Какова вероятность приобрести исправный телевизор в этом магазине? Если в телевизоре обнаружен дефект, то на каком заводе, скорее всего, изготовлен этот телевизор?
3. При данном технологическом процессе (75+k)% всей продукции - 1-го сорта. Найдите наивероятнейшее число первосортных изделий из (200+10k) изделий и вероятность этого события.
4. Для подготовки к экзамену студенту нужна определенная книга, которая может находиться в каждой из 4-х доступных студенту библиотек с вероятностью (0,3+ k/100). Составить закон распределения числа посещаемых библиотек. Обход прекращается после получения нужной книги или посещения всех четырех библиотек. Найдите математическое ожидание и дисперсию этой случайной величины (СВ).
5. В процессе исследования среднедушевого дохода (в усл. ден. ед.) обследовано 100 семей. Выявлено, что математическое ожидание равно (2500+100k), а среднеквадратическое отклонение составило (400+10k). В предположении о нормальном законе найдите долю семей, чей среднедушевой доход находится в пределах от 2200 до 2800.
1. Вероятность того, что в страховую компанию (СК) в течение года обратится с иском о возмещении ущерба первый клиент, равна (15+k)/100. Для второго клиента вероятность такого обращения равна (20+ k)/100. Для третьего клиента - (10+k)/100. Найдите вероятность того, что в течение года в СК обратится хотя бы один клиент, если обращения клиентов - события независимые.
2. В магазин поступают телевизоры с трех заводов: (30+k)% с первого завода, (25+k)% - со второго, остальные с третьего. При этом первый завод выпускает (20+ k)% телевизоров со скрытым дефектом, второй, соответственно, (10+ k)%, а третий - (15+ k)%. Какова вероятность приобрести исправный телевизор в этом магазине? Если в телевизоре обнаружен дефект, то на каком заводе, скорее всего, изготовлен этот телевизор?
3. При данном технологическом процессе (75+k)% всей продукции - 1-го сорта. Найдите наивероятнейшее число первосортных изделий из (200+10k) изделий и вероятность этого события.
4. Для подготовки к экзамену студенту нужна определенная книга, которая может находиться в каждой из 4-х доступных студенту библиотек с вероятностью (0,3+ k/100). Составить закон распределения числа посещаемых библиотек. Обход прекращается после получения нужной книги или посещения всех четырех библиотек. Найдите математическое ожидание и дисперсию этой случайной величины (СВ).
5. В процессе исследования среднедушевого дохода (в усл. ден. ед.) обследовано 100 семей. Выявлено, что математическое ожидание равно (2500+100k), а среднеквадратическое отклонение составило (400+10k). В предположении о нормальном законе найдите долю семей, чей среднедушевой доход находится в пределах от 2200 до 2800.
k=1
1. Вероятность того, что в страховую компанию (СК) в течение года обратится с иском о возмещении ущерба первый клиент, равна (15+k)/100. Для второго клиента вероятность такого обращения равна (20+ k)/100. Для третьего клиента - (10+k)/100. Найдите вероятность того, что в течение года в СК обратится хотя бы один клиент, если обращения клиентов - события независимые.
2. В магазин поступают телевизоры с трех заводов: (30+k)% с первого завода, (25+k)% - со второго, остальные с третьего. При этом первый завод выпускает (20+ k)% телевизоров со скрытым дефектом, второй, соответственно, (10+ k)%, а третий - (15+ k)%. Какова вероятность приобрести исправный телевизор в этом магазине? Если в телевизоре обнаружен дефект, то на каком заводе, скорее всего, изготовлен этот телевизор?
3. При данном технологическом процессе (75+k)% всей продукции - 1-го сорта. Найдите наивероятнейшее число первосортных изделий из (200+10k) изделий и вероятность этого события.
4. Для подготовки к экзамену студенту нужна определенная книга, которая может находиться в каждой из 4-х доступных студенту библиотек с вероятностью (0,3+ k/100). Составить закон распределения числа посещаемых библиотек. Обход прекращается после получения нужной книги или посещения всех четырех библиотек. Найдите математическое ожидание и дисперсию этой случайной величины (СВ).
5. В процессе исследования среднедушевого дохода (в усл. ден. ед.) обследовано 100 семей. Выявлено, что математическое ожидание равно (2500+100k), а среднеквадратическое отклонение составило (400+10k). В предположении о нормальном законе найдите долю семей, чей среднедушевой доход находится в пределах от 2200 до 2800.
1. Вероятность того, что в страховую компанию (СК) в течение года обратится с иском о возмещении ущерба первый клиент, равна (15+k)/100. Для второго клиента вероятность такого обращения равна (20+ k)/100. Для третьего клиента - (10+k)/100. Найдите вероятность того, что в течение года в СК обратится хотя бы один клиент, если обращения клиентов - события независимые.
2. В магазин поступают телевизоры с трех заводов: (30+k)% с первого завода, (25+k)% - со второго, остальные с третьего. При этом первый завод выпускает (20+ k)% телевизоров со скрытым дефектом, второй, соответственно, (10+ k)%, а третий - (15+ k)%. Какова вероятность приобрести исправный телевизор в этом магазине? Если в телевизоре обнаружен дефект, то на каком заводе, скорее всего, изготовлен этот телевизор?
3. При данном технологическом процессе (75+k)% всей продукции - 1-го сорта. Найдите наивероятнейшее число первосортных изделий из (200+10k) изделий и вероятность этого события.
4. Для подготовки к экзамену студенту нужна определенная книга, которая может находиться в каждой из 4-х доступных студенту библиотек с вероятностью (0,3+ k/100). Составить закон распределения числа посещаемых библиотек. Обход прекращается после получения нужной книги или посещения всех четырех библиотек. Найдите математическое ожидание и дисперсию этой случайной величины (СВ).
5. В процессе исследования среднедушевого дохода (в усл. ден. ед.) обследовано 100 семей. Выявлено, что математическое ожидание равно (2500+100k), а среднеквадратическое отклонение составило (400+10k). В предположении о нормальном законе найдите долю семей, чей среднедушевой доход находится в пределах от 2200 до 2800.
Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям
1. Вероятность того, что в страховую компанию (СК) в течение года обратится с иском о возмещении ущерба первый клиент, равна (15+k)/100. Для второго клиента вероятность такого обращения равна (20+ k)/100. Для третьего клиента - (10+k)/100. Найдите вероятность того, что в течение года в СК обратится хотя бы один клиент, если обращения клиентов - события независимые.
2. В магазин поступают телевизоры с трех заводов: (30+k)% с первого завода, (25+k)% - со второго, остальные с третьего. При этом первый завод выпускает (20+ k)% телевизоров со скрытым дефектом, второй, соответственно, (10+ k)%, а третий - (15+ k)%. Какова вероятность приобрести исправный телевизор в этом магазине? Если в телевизоре обнаружен дефект, то на каком заводе, скорее всего, изготовлен этот телевизор?
3. При данном технологическом процессе (75+k)% всей продукции - 1-го сорта. Найдите наивероятнейшее число первосортных изделий из (200+10k) изделий и вероятность этого события.
4. Для подготовки к экзамену студенту нужна определенная книга, которая может находиться в каждой из 4-х доступных студенту библиотек с вероятностью (0,3+ k/100). Составить закон распределения числа посещаемых библиотек. Обход прекращается после получения нужной книги или посещения всех четырех библиотек. Найдите математическое ожидание и дисперсию этой случайной величины (СВ).
5. В процессе исследования среднедушевого дохода (в усл. ден. ед.) обследовано 100 семей. Выявлено, что математическое ожидание равно (2500+100k), а среднеквадратическое отклонение составило (400+10k). В предположении о нормальном законе найдите долю семей, чей среднедушевой доход находится в пределах от 2200 до 2800.
1. Вероятность того, что в страховую компанию (СК) в течение года обратится с иском о возмещении ущерба первый клиент, равна (15+k)/100. Для второго клиента вероятность такого обращения равна (20+ k)/100. Для третьего клиента - (10+k)/100. Найдите вероятность того, что в течение года в СК обратится хотя бы один клиент, если обращения клиентов - события независимые.
2. В магазин поступают телевизоры с трех заводов: (30+k)% с первого завода, (25+k)% - со второго, остальные с третьего. При этом первый завод выпускает (20+ k)% телевизоров со скрытым дефектом, второй, соответственно, (10+ k)%, а третий - (15+ k)%. Какова вероятность приобрести исправный телевизор в этом магазине? Если в телевизоре обнаружен дефект, то на каком заводе, скорее всего, изготовлен этот телевизор?
3. При данном технологическом процессе (75+k)% всей продукции - 1-го сорта. Найдите наивероятнейшее число первосортных изделий из (200+10k) изделий и вероятность этого события.
4. Для подготовки к экзамену студенту нужна определенная книга, которая может находиться в каждой из 4-х доступных студенту библиотек с вероятностью (0,3+ k/100). Составить закон распределения числа посещаемых библиотек. Обход прекращается после получения нужной книги или посещения всех четырех библиотек. Найдите математическое ожидание и дисперсию этой случайной величины (СВ).
5. В процессе исследования среднедушевого дохода (в усл. ден. ед.) обследовано 100 семей. Выявлено, что математическое ожидание равно (2500+100k), а среднеквадратическое отклонение составило (400+10k). В предположении о нормальном законе найдите долю семей, чей среднедушевой доход находится в пределах от 2200 до 2800.
k=1
1. Вероятность того, что в страховую компанию (СК) в течение года обратится с иском о возмещении ущерба первый клиент, равна (15+k)/100. Для второго клиента вероятность такого обращения равна (20+ k)/100. Для третьего клиента - (10+k)/100. Найдите вероятность того, что в течение года в СК обратится хотя бы один клиент, если обращения клиентов - события независимые.
2. В магазин поступают телевизоры с трех заводов: (30+k)% с первого завода, (25+k)% - со второго, остальные с третьего. При этом первый завод выпускает (20+ k)% телевизоров со скрытым дефектом, второй, соответственно, (10+ k)%, а третий - (15+ k)%. Какова вероятность приобрести исправный телевизор в этом магазине? Если в телевизоре обнаружен дефект, то на каком заводе, скорее всего, изготовлен этот телевизор?
3. При данном технологическом процессе (75+k)% всей продукции - 1-го сорта. Найдите наивероятнейшее число первосортных изделий из (200+10k) изделий и вероятность этого события.
4. Для подготовки к экзамену студенту нужна определенная книга, которая может находиться в каждой из 4-х доступных студенту библиотек с вероятностью (0,3+ k/100). Составить закон распределения числа посещаемых библиотек. Обход прекращается после получения нужной книги или посещения всех четырех библиотек. Найдите математическое ожидание и дисперсию этой случайной величины (СВ).
5. В процессе исследования среднедушевого дохода (в усл. ден. ед.) обследовано 100 семей. Выявлено, что математическое ожидание равно (2500+100k), а среднеквадратическое отклонение составило (400+10k). В предположении о нормальном законе найдите долю семей, чей среднедушевой доход находится в пределах от 2200 до 2800.
1. Вероятность того, что в страховую компанию (СК) в течение года обратится с иском о возмещении ущерба первый клиент, равна (15+k)/100. Для второго клиента вероятность такого обращения равна (20+ k)/100. Для третьего клиента - (10+k)/100. Найдите вероятность того, что в течение года в СК обратится хотя бы один клиент, если обращения клиентов - события независимые.
2. В магазин поступают телевизоры с трех заводов: (30+k)% с первого завода, (25+k)% - со второго, остальные с третьего. При этом первый завод выпускает (20+ k)% телевизоров со скрытым дефектом, второй, соответственно, (10+ k)%, а третий - (15+ k)%. Какова вероятность приобрести исправный телевизор в этом магазине? Если в телевизоре обнаружен дефект, то на каком заводе, скорее всего, изготовлен этот телевизор?
3. При данном технологическом процессе (75+k)% всей продукции - 1-го сорта. Найдите наивероятнейшее число первосортных изделий из (200+10k) изделий и вероятность этого события.
4. Для подготовки к экзамену студенту нужна определенная книга, которая может находиться в каждой из 4-х доступных студенту библиотек с вероятностью (0,3+ k/100). Составить закон распределения числа посещаемых библиотек. Обход прекращается после получения нужной книги или посещения всех четырех библиотек. Найдите математическое ожидание и дисперсию этой случайной величины (СВ).
5. В процессе исследования среднедушевого дохода (в усл. ден. ед.) обследовано 100 семей. Выявлено, что математическое ожидание равно (2500+100k), а среднеквадратическое отклонение составило (400+10k). В предположении о нормальном законе найдите долю семей, чей среднедушевой доход находится в пределах от 2200 до 2800.
Купить эту работу vs Заказать новую | ||
---|---|---|
0 раз | Куплено | Выполняется индивидуально |
Не менее 40%
Исполнитель, загружая работу в «Банк готовых работ» подтверждает, что
уровень оригинальности
работы составляет не менее 40%
|
Уникальность | Выполняется индивидуально |
Сразу в личном кабинете | Доступность | Срок 1—4 дня |
300 ₽ | Цена | от 20 ₽ |
Не подошла эта работа?
В нашей базе 23423 Решения задач — поможем найти подходящую