Спасибо!!!
Подробнее о работе
Гарантия сервиса Автор24
Уникальность не ниже 50%
В настоящее время линейное программирование является одним из наиболее употребительных аппаратов математической теории оптимального принятия решений. Для решения задач линейного программирования разработано сложное программное обеспечение, дающее возможность эффективно и надежно решать практические задачи больших объемов. Владение аппаратом линейного программирования необходимо каждому специалисту в области прикладной математики.
Линейное программирование – это наука о методах исследования и отыскания наибольших и наименьших значений линейной функции, на неизвестные которой наложены линейные ограничения. Таким образом, задачи линейного программирования относятся к задачам на условный экстремум функции. По типу решаемых задач методы разделяются на универсальные и специальные. С помощью универсальных методов могут решаться любые задачи линейного программирования (ЗЛП). Специальные методы учитывают особенности модели задачи, ее целевой функции и системы ограничений.
Применение методов линейного программирования актуально на сегодняшний день, так как использование математических моделей является важным направлением совершенствования планирования и анализа деятельности компании. Представление данных в виде математической модели позволяет конкретизировать информацию, создавать и моделировать варианты, выбирать оптимальные решения.
Актуальность линейного программирования и обусловила выбор темы данной дипломной работы. Значимость выбранного вопроса определяется также тем, что использование метода линейного программирования представляет собой важность и ценность - оптимальный вариант выбирается из достаточно значительного количества альтернативных вариантов. Также все экономические задачи, решаемые с применением линейного программирования, отличаются альтернативностью решения и определенными ограничивающими условиями
Особенностью задач линейного программирования является то, что экстремума целевая функция достигает на границе области допустимых решений. Классические же методы дифференциального исчисления связаны с нахождением экстремумов функции во внутренней точке области допустимых значений. Отсюда — необходимость разработки новых методов.
Линейное программирование представляет собой наиболее часто используемый метод оптимизации.
Целью работы является анализ задач линейного программирования.
Введение 3
Глава 1. Линейные математические модели 5
1.1. Понятие математической модели 5
1.2. Моделирование в экономике 7
Глава 2. Математические модели типовых задач линейного программирования 11
2.1. Линейная производственная задача 11
2.2. Расшивка узких мест производства 22
2.3. Транспортная задача 25
2.4. Динамическая задача распределения инвестиций 30
2.5. Оптимальный портфель ценных бумаг 34
2.6. Оптимальность по Парето 38
2.7. Модель поведения производителя 41
2.8. Модель Леонтьева 43
2.9. Модель Солоу 44
2.10. Многокритериальная оптимизация 46
Глава 3. Решение задач моделирования и оптимизации планирования производства в среде Microsoft Excel и Mathcad 48
Заключение 57
Список литературы 58
Свойства конкретной алгоритмической модели, на которой ба-зируется алгоритм поиска оптимального решения, например ее линейность или выпуклость, могут быть определены только в процессе экспериментирования с ней, в связи с чем для решения моделей этого класса используются так называемые методы экспериментальной оптимизации на ЭВМ. При использовании этих методов производится пошаговое приближение к оптимальному решению на основе результатов расчета по алгоритму, моделирующему работу исследуемой системы. Методы базируются на принципах поиска оптимальных решений в численных методах, но в отличие от них все работы по разработке алгоритма и программы оптимизации выполняет разработчик модели.
Имитационное моделирование задач, содержащих случайные параметры, принято называть статистическим моделированием.
Заключительным шагом создания модели является составление ее описания, которое содержит сведения, необходимые для изучения модели, ее дальнейшего использования, а также все ограничения и допущения. Тщательный и полный учет факторов при построении модели и формулировке допущений позволяет оценить точность модели, избежать ошибок при интерпретации ее результатов.
Таким образом, в настоящей работе рассмотрены теоретические аспекты построения линейных математических моделей, приведен обзор математических моделей типовых задач, получено практическое решение.
1. Абчук В.А. Экономико - математические методы. – СПб., Союз, 1999.
2. Багриновский К.А., Матюшок В.М. Экономико – математические методы и модели. – М.: РУДН, 1999.
3. Гаркас В.А. Использование VS Excel и VBA в экономике и финансах. – СПб. , 1999.
4. Горбовцов Г.Я. Методы оптимизации и: Учебно – практическое пособие. – М.: МЭСИ, 2000.
5. Горчаков А.А., Орлова И.В. Компьютерные экономико – математические модели. – М.: ЮНИТИ, 1995.
6. Жданов С.А. Экономические модели и методы в управлении. – М.: ДиС, 1998.
7. Зайцев М.Г. Методы оптимизации управления для менеджеров. Компьютерно – ориентированный подход: Учеб. Пособие. – М.: Дело, 2002.
8. Замков О.О., Толтопятенко А.В., Черемных Ю.П. Математические методы в экономике: Учебник. – М.: ДИС, 1997.
9. Касимов Ю.Ф. Основы теории оптимального портфеля ценных бумаг. – М.ИИД «Филинъ», 1998.
10. Кремер Н.Ш. Исследование операций в экономике. – М.: ЮНИТИ, 1997.
11. Мельник М.М. Экономико – математические методы в планировании и управлении материально – техническим снабжением. – М.: Высшая школа, 1990.
12. Орлова И.В. Экономико – математические методы и модели. Выполнение расчетов в среде Excel. Практикум. – М.: Финстатинформ, 2000.
13. Орлова И.В., Половников В.А., Федосеева Г.В. Курс лекций по экономико – математическому моделированию. – М.: Экономическое образование, 1993.
14. Солодовников А.С., Бабайцев В.А., Браилов А.В. Математика в экономике: Учебник. В 2-х частях. Ч.1. –М.: Финансы и статистика, 1999.
15. Уотшем Т. Дж., Паррамоу К. Количественные методы в финансах. – М.: Финансы, ЮНИТИ, 1999.
16. Федосеев В.А., Гармаш А.Н., Дайтбегов Д.М., Орлова И.В., Половников В.А. Экономико – математические методы и прикладные модели: Учеб. Пособие для вузов/ Под ред. В.В. Федосеева. – М.: ЮНИТИ, 1999.
17. Федосеев В.В., Гармаш А.Н. и др. Экономико – математические методы и прикладные модели. – М.: ЮНИТИ, 1999.
18. Хазинова Л.Э. Математическое моделирование в экономике. – М.: БЕК, 1998.
19. Шипин Е.В., Чхартиневили А.Г. Математические методы и модели в управлении. – М.: Дело, 2000.
20. Эддоус М., Стенсфилд Р. Методы принятия решения. – М.: ЮНИТИ, 1997.
21. Экономико – математические методы и прикладные модели: Учебное пособие для вузов/ Под ред. В.В. Федосеева. – М.: ЮНИТИ, 1999.
Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям
В настоящее время линейное программирование является одним из наиболее употребительных аппаратов математической теории оптимального принятия решений. Для решения задач линейного программирования разработано сложное программное обеспечение, дающее возможность эффективно и надежно решать практические задачи больших объемов. Владение аппаратом линейного программирования необходимо каждому специалисту в области прикладной математики.
Линейное программирование – это наука о методах исследования и отыскания наибольших и наименьших значений линейной функции, на неизвестные которой наложены линейные ограничения. Таким образом, задачи линейного программирования относятся к задачам на условный экстремум функции. По типу решаемых задач методы разделяются на универсальные и специальные. С помощью универсальных методов могут решаться любые задачи линейного программирования (ЗЛП). Специальные методы учитывают особенности модели задачи, ее целевой функции и системы ограничений.
Применение методов линейного программирования актуально на сегодняшний день, так как использование математических моделей является важным направлением совершенствования планирования и анализа деятельности компании. Представление данных в виде математической модели позволяет конкретизировать информацию, создавать и моделировать варианты, выбирать оптимальные решения.
Актуальность линейного программирования и обусловила выбор темы данной дипломной работы. Значимость выбранного вопроса определяется также тем, что использование метода линейного программирования представляет собой важность и ценность - оптимальный вариант выбирается из достаточно значительного количества альтернативных вариантов. Также все экономические задачи, решаемые с применением линейного программирования, отличаются альтернативностью решения и определенными ограничивающими условиями
Особенностью задач линейного программирования является то, что экстремума целевая функция достигает на границе области допустимых решений. Классические же методы дифференциального исчисления связаны с нахождением экстремумов функции во внутренней точке области допустимых значений. Отсюда — необходимость разработки новых методов.
Линейное программирование представляет собой наиболее часто используемый метод оптимизации.
Целью работы является анализ задач линейного программирования.
Введение 3
Глава 1. Линейные математические модели 5
1.1. Понятие математической модели 5
1.2. Моделирование в экономике 7
Глава 2. Математические модели типовых задач линейного программирования 11
2.1. Линейная производственная задача 11
2.2. Расшивка узких мест производства 22
2.3. Транспортная задача 25
2.4. Динамическая задача распределения инвестиций 30
2.5. Оптимальный портфель ценных бумаг 34
2.6. Оптимальность по Парето 38
2.7. Модель поведения производителя 41
2.8. Модель Леонтьева 43
2.9. Модель Солоу 44
2.10. Многокритериальная оптимизация 46
Глава 3. Решение задач моделирования и оптимизации планирования производства в среде Microsoft Excel и Mathcad 48
Заключение 57
Список литературы 58
Свойства конкретной алгоритмической модели, на которой ба-зируется алгоритм поиска оптимального решения, например ее линейность или выпуклость, могут быть определены только в процессе экспериментирования с ней, в связи с чем для решения моделей этого класса используются так называемые методы экспериментальной оптимизации на ЭВМ. При использовании этих методов производится пошаговое приближение к оптимальному решению на основе результатов расчета по алгоритму, моделирующему работу исследуемой системы. Методы базируются на принципах поиска оптимальных решений в численных методах, но в отличие от них все работы по разработке алгоритма и программы оптимизации выполняет разработчик модели.
Имитационное моделирование задач, содержащих случайные параметры, принято называть статистическим моделированием.
Заключительным шагом создания модели является составление ее описания, которое содержит сведения, необходимые для изучения модели, ее дальнейшего использования, а также все ограничения и допущения. Тщательный и полный учет факторов при построении модели и формулировке допущений позволяет оценить точность модели, избежать ошибок при интерпретации ее результатов.
Таким образом, в настоящей работе рассмотрены теоретические аспекты построения линейных математических моделей, приведен обзор математических моделей типовых задач, получено практическое решение.
1. Абчук В.А. Экономико - математические методы. – СПб., Союз, 1999.
2. Багриновский К.А., Матюшок В.М. Экономико – математические методы и модели. – М.: РУДН, 1999.
3. Гаркас В.А. Использование VS Excel и VBA в экономике и финансах. – СПб. , 1999.
4. Горбовцов Г.Я. Методы оптимизации и: Учебно – практическое пособие. – М.: МЭСИ, 2000.
5. Горчаков А.А., Орлова И.В. Компьютерные экономико – математические модели. – М.: ЮНИТИ, 1995.
6. Жданов С.А. Экономические модели и методы в управлении. – М.: ДиС, 1998.
7. Зайцев М.Г. Методы оптимизации управления для менеджеров. Компьютерно – ориентированный подход: Учеб. Пособие. – М.: Дело, 2002.
8. Замков О.О., Толтопятенко А.В., Черемных Ю.П. Математические методы в экономике: Учебник. – М.: ДИС, 1997.
9. Касимов Ю.Ф. Основы теории оптимального портфеля ценных бумаг. – М.ИИД «Филинъ», 1998.
10. Кремер Н.Ш. Исследование операций в экономике. – М.: ЮНИТИ, 1997.
11. Мельник М.М. Экономико – математические методы в планировании и управлении материально – техническим снабжением. – М.: Высшая школа, 1990.
12. Орлова И.В. Экономико – математические методы и модели. Выполнение расчетов в среде Excel. Практикум. – М.: Финстатинформ, 2000.
13. Орлова И.В., Половников В.А., Федосеева Г.В. Курс лекций по экономико – математическому моделированию. – М.: Экономическое образование, 1993.
14. Солодовников А.С., Бабайцев В.А., Браилов А.В. Математика в экономике: Учебник. В 2-х частях. Ч.1. –М.: Финансы и статистика, 1999.
15. Уотшем Т. Дж., Паррамоу К. Количественные методы в финансах. – М.: Финансы, ЮНИТИ, 1999.
16. Федосеев В.А., Гармаш А.Н., Дайтбегов Д.М., Орлова И.В., Половников В.А. Экономико – математические методы и прикладные модели: Учеб. Пособие для вузов/ Под ред. В.В. Федосеева. – М.: ЮНИТИ, 1999.
17. Федосеев В.В., Гармаш А.Н. и др. Экономико – математические методы и прикладные модели. – М.: ЮНИТИ, 1999.
18. Хазинова Л.Э. Математическое моделирование в экономике. – М.: БЕК, 1998.
19. Шипин Е.В., Чхартиневили А.Г. Математические методы и модели в управлении. – М.: Дело, 2000.
20. Эддоус М., Стенсфилд Р. Методы принятия решения. – М.: ЮНИТИ, 1997.
21. Экономико – математические методы и прикладные модели: Учебное пособие для вузов/ Под ред. В.В. Федосеева. – М.: ЮНИТИ, 1999.
Купить эту работу vs Заказать новую | ||
---|---|---|
0 раз | Куплено | Выполняется индивидуально |
Не менее 40%
Исполнитель, загружая работу в «Банк готовых работ» подтверждает, что
уровень оригинальности
работы составляет не менее 40%
|
Уникальность | Выполняется индивидуально |
Сразу в личном кабинете | Доступность | Срок 1—6 дней |
2240 ₽ | Цена | от 3000 ₽ |
Не подошла эта работа?
В нашей базе 55687 Дипломных работ — поможем найти подходящую