Доволен работой. Все хорошо!
Подробнее о работе
Гарантия сервиса Автор24
Уникальность не ниже 50%
ВВЕДЕНИЕ
В различных ситуациях, используя метод проб и ошибок, интуицию и опыт, накапливаемый в каждой конкретной ситуации, мы пытаемся выработать пути принятия наилучших решений.
Принятие решения в конкретной ситуации требует особого подхода и использования многообразия существующих альтернатив и методов поиска.
С середины XX в. в самых различных областях человеческой деятельности стали широко применять математические методы и ЭВМ. Возникли такие новые дисциплины, как «математическая экономика», «математическая химия», «математическая лингвистика» и т.д., изучающие математические модели соответствующих объектов и явлений, а также методы исследования этих моделей.
СОДЕРЖАНИЕ
Введение 3
1. Использование методов линейного программирования для целей оптимального распределения ресурсов 4
1.1. Оптимизация плана перевозок с использованием метода потенциалов 4
1.2. Оптимизация плана транспортной задачи с использованием метода потенциалов на сети 11
1.3. Обобщенная (распределительная) транспортная задача 15
2. Применение методов математической статистики в экономических расчетах 23
2.1. Расчет параметров регрессионных моделей. 23
2.2. Расчет параметров парной корреляции 27
2.3. Выравнивание рядов распределений с проверкой гипотезы нормальности по критерию Пирсона на базе эмпирического ряда величин себестоимости железнодорожной перевозки. 29
Список литературы 36
-
СПИСОК ЛИТЕРАТУРЫ
5. Бережная Е.В. Математические методы моделирования экономических систем. — М.: Инфра-М, 2005.
6. Карчик В.Г. Математические методы в планировании и управлении на железнодорожном транспорте: Учебное пособие. Часть вторая – Л.:ЛИИЖТ
7. Математическое моделирование экономических процессов на железнодорожном транспорте.: Учебник для ВУЗов/ Под ред. А.Б. Каплана. – М.: Транспорт, 1984
8. Кочович Е. Финансовая математика. – М. Перспектива, 1994.
9. Гольштейн Е.Г. Задачи линейного программирования транспортного типа. – М.:Наука, 1969
10. Карчик В.Г. Математическое моделирование экономических процессов на железнодорожном транспорте. – СПб.: Издательство “Милена”, 2001
11. Красс М. С., Чупрынов Б. П. Основы математики и её приложения в экономическом образовании: учебник. – 6-е изд., испр. – М.: Издательст- во “Дело” АНХ, 2012. – 720 с.
12. Таха, Хемди А. Введение в исследование операций, 7-издание,: Пер. с англ. – М.: Издательский дом «Вильямс», 2010. – 912 с.: ил. – Парал. Тит. англ.
13. Шикин Е. В, Чхартишвили А. Г. Математические методы и модели в управлении: Учеб. пособие. – 2-е изд,. Испрв, – М.: Дело, 2012, – 440 с. – (Сер. «Наука управления»)
14. Экономико-математические методы и прикладные модели: Учеб. Пособие для вузов / Под ред. В.В. Федосеева. — М.: ЮНИТИ, 2012.
Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям
ВВЕДЕНИЕ
В различных ситуациях, используя метод проб и ошибок, интуицию и опыт, накапливаемый в каждой конкретной ситуации, мы пытаемся выработать пути принятия наилучших решений.
Принятие решения в конкретной ситуации требует особого подхода и использования многообразия существующих альтернатив и методов поиска.
С середины XX в. в самых различных областях человеческой деятельности стали широко применять математические методы и ЭВМ. Возникли такие новые дисциплины, как «математическая экономика», «математическая химия», «математическая лингвистика» и т.д., изучающие математические модели соответствующих объектов и явлений, а также методы исследования этих моделей.
СОДЕРЖАНИЕ
Введение 3
1. Использование методов линейного программирования для целей оптимального распределения ресурсов 4
1.1. Оптимизация плана перевозок с использованием метода потенциалов 4
1.2. Оптимизация плана транспортной задачи с использованием метода потенциалов на сети 11
1.3. Обобщенная (распределительная) транспортная задача 15
2. Применение методов математической статистики в экономических расчетах 23
2.1. Расчет параметров регрессионных моделей. 23
2.2. Расчет параметров парной корреляции 27
2.3. Выравнивание рядов распределений с проверкой гипотезы нормальности по критерию Пирсона на базе эмпирического ряда величин себестоимости железнодорожной перевозки. 29
Список литературы 36
-
СПИСОК ЛИТЕРАТУРЫ
5. Бережная Е.В. Математические методы моделирования экономических систем. — М.: Инфра-М, 2005.
6. Карчик В.Г. Математические методы в планировании и управлении на железнодорожном транспорте: Учебное пособие. Часть вторая – Л.:ЛИИЖТ
7. Математическое моделирование экономических процессов на железнодорожном транспорте.: Учебник для ВУЗов/ Под ред. А.Б. Каплана. – М.: Транспорт, 1984
8. Кочович Е. Финансовая математика. – М. Перспектива, 1994.
9. Гольштейн Е.Г. Задачи линейного программирования транспортного типа. – М.:Наука, 1969
10. Карчик В.Г. Математическое моделирование экономических процессов на железнодорожном транспорте. – СПб.: Издательство “Милена”, 2001
11. Красс М. С., Чупрынов Б. П. Основы математики и её приложения в экономическом образовании: учебник. – 6-е изд., испр. – М.: Издательст- во “Дело” АНХ, 2012. – 720 с.
12. Таха, Хемди А. Введение в исследование операций, 7-издание,: Пер. с англ. – М.: Издательский дом «Вильямс», 2010. – 912 с.: ил. – Парал. Тит. англ.
13. Шикин Е. В, Чхартишвили А. Г. Математические методы и модели в управлении: Учеб. пособие. – 2-е изд,. Испрв, – М.: Дело, 2012, – 440 с. – (Сер. «Наука управления»)
14. Экономико-математические методы и прикладные модели: Учеб. Пособие для вузов / Под ред. В.В. Федосеева. — М.: ЮНИТИ, 2012.
Купить эту работу vs Заказать новую | ||
---|---|---|
0 раз | Куплено | Выполняется индивидуально |
Не менее 40%
Исполнитель, загружая работу в «Банк готовых работ» подтверждает, что
уровень оригинальности
работы составляет не менее 40%
|
Уникальность | Выполняется индивидуально |
Сразу в личном кабинете | Доступность | Срок 1—6 дней |
660 ₽ | Цена | от 500 ₽ |
Не подошла эта работа?
В нашей базе 149278 Курсовых работ — поможем найти подходящую