Автор24

Информация о работе

Подробнее о работе

Страница работы

Интеллектуализация системы видеонаблюдения

  • 47 страниц
  • 2015 год
  • 563 просмотра
  • 2 покупки
Автор работы

abrutsze

1000 ₽

Работа будет доступна в твоём личном кабинете после покупки

Гарантия сервиса Автор24

Уникальность не ниже 50%

Фрагменты работ

Видеоаналитика (video analytics)[1,7] — аппаратно-программное обеспечение или технология, использующие методы компьютерного зрения для автоматизированного сбора данных на основании анализа потокового видео (видеоанализа). Видеоаналитика опирается на алгоритмы обработки изображения и распознавания образов, позволяющие анализировать видео без прямого участия человека. Видеоаналитика используется в составе интеллектуальных систем видеонаблюдения (CCTV, охранного телевидения), управления бизнесом (business intelligence, BI) и видеопоиска.

Функции видеоаналитики
В зависимости от целей, видеоаналитика может реализовать как одну, так и несколько базовых функций:
• Обнаружение объектов (object detection). Как правило, обнаружение объектов в поле зрения камеры производиться при помощи видеодетекторов движения. Основное отличие видеоаналитики от ИК-датчиков движения состоит в возможности локализации (выделении) и независимого анализа сразу нескольких объектов. Если движение не является достаточным признаком для локализации объекта в кадре, то обнаружение может производиться при помощи шаблонов. Например, обнаружение лиц людей, номерных знаков автомобилей или обнаружение малоподвижных морских целей может быть реализовано при помощи признаков Хаара.
• Слежение за объектами (object tracking). Алгоритмы слежения (сопровождения) позволяют получить частную траекторию движения объекта как в поле зрения одной камеры, так и обобщенную траекторию по данным сразу нескольких камер. Слежение необходимо, чтобы проанализировать поведение объекта по его траектории, например, определить движение человека против потока или движение с повышенной скоростью. Кроме этого, слежение необходимо для исключения повторных срабатываний систем видеоаналитики на одни и те же объекты. Профессиональные системы работают по правилу «один тревожный объект – одно срабатывание» для достижения высокой продуктивности оператора.
• Классификация объектов (object classification). Некоторые системы видеоаналитики классифицируют объекты для фильтрации оперативных уведомлений или результатов поиска. Например, типовой классификатор объектов, используя признаки формы и абсолютные размеры, распределяет объекты на группы: человек, группа людей, транспортное средство. Более сложные классификаторы в системах видеоаналитики для ритейла могут определить пол или возвратную группу человека.
• Идентификация объектов (object identification). Идентификация объектов является наиболее сложным компонентом систем видеоаналитики. Современные системы позволяют идентифицировать людей по биометрическим признакам лица или транспортные средства – по номерным знакам. Идентификация может быть реализована при помощи дополнительных средств за рамками видеоаналитики: на основе отпечатков пальцев, банковской карты, билета, пропуска или идентификатора мобильного устройства.

Рис. 1 Идентификация объектов
• Обнаружение (распознавание) ситуаций. Видеоаналитика позволяет не только выделять объекты из потокового видео, но и распознавать тревожные ситуации на основе анализа поведения данного объекта, что не дает сделать обычная система видеонаблюдения. Также ситуационная видеоаналитика может автоматически детектировать пересечение сигнальной линии, падение людей, запрещенную парковку и возникновение пожара.

Рис. 2 Обнаружение (распознавание) ситуаций
Результатами работы видеоаналитики являются события (сообщения), которые могут быть переданы оператору системы видеонаблюдения или записаны в видеоархив для последующего поиска (пример событий, поддерживаемых платформой Kipod). Кроме этого, видеоаналитика формирует метаданные, то есть структуры данных, которые описывают содержание каждого кадра видеопоследовательности. Метаданные содержат такую информацию как местоположение и идентификаторы объектов (как правило, в виде тревожной рамки), траекторию и скорость движения объектов, данные о разделении или слиянии объектов, данные о возникновении и окончании тревожной ситуации. Метаданные записываются в видеоархив и воспроизводятся вместе с видео.




Видеоаналитика может иметь расширенные функции, такие как:
• Прогнозирование поведения объекта или возникновения ситуаций (например, образование очереди на кассе через 15 минут с учетом числа зашедших покупателей и числа работающих касс);
• Интеллектуальное сжатие видеоконтента с учетом интереса потребителя (например, система передает только видео, содержащие тревожные ситуации);
• Ранжирование (определение приоритета) событий видеоаналитики;
• Формирование производных видеоданных (интегральный кадр, таймплапс)
• Удаление персональных данных из видеоряда, например, при помощи детектора лиц и номерных знаков.
Целью данной работы является полное рассмотрение систем видеоаналитики, начиная от самого понятия функционала и возможностей заканчивая правовыми актами и законодательством. Чтоб процесс изучения данных систем был более понятен будут приведены различные примеры и реализации данной технологии.
Объект исследования – участки где используются системы видеоанализа для охраны периметра.
Предметы исследования – методология автоматизированного проектирования и оценки эффективности системы безопасности, разработанная компанией «Амулет»; всепогодные камеры семейства «МВК» компании «БайтЭрг», видеосервер «VideoСервер iX» компании «Агрегатор»; устройство «MagicBox» с периметральной видеоаналитикой компаниии «Синезис»; а также платформа видеонаблюдения «Интеллект» компании «iTV».

Введение ……………………………………………………………….……….3
ГЛАВА 1. Существующие технологии видеоаналитики……………..………...8
1.1. Основные типы видеоаналитики………………………………………....8
1.2. Архитектуры системы видеоаналитики.……………………..………...11
1.1. Способы определения тревожных ситуаций……………………..……13
1.1. Международные стандарты…………………………………...…...……13
1.1. Области применения видеоаналитики………………………….....……14
ГЛАВА 2. Опыт внедрения многокамерной видеоаналитики для охраны периметра………………………………………………………….……………..17
2.1. Описание объекта потенциальные угрозы и задачи системы видеонаблюдения. ………….…….………………………………….…………. 17
2.2Аппаратное обеспечение и размещение камер.…………….…….……. 19
2.3. Приемная часть системы видеонаблюдения……………….………......24
2.1. Уличная видеоаналитика..………………………….…….……………..25
2.1. Оценка качества изображения..………………………….……..……….29
2.1. Многокамерное сопровождение..………………………….…….……..34
ГЛАВА 3. Видеонаблюдение правовые акты и законы..…….………………..38
Заключение….………………………………………….………………….……47
Список использованной литературы………………….………………………..48

Целью данной работы является полное рассмотрение систем видеоаналитики, начиная от самого понятия функционала и возможностей заканчивая правовыми актами и законодательством. Чтоб процесс изучения данных систем был более понятен будут приведены различные примеры и реализации данной технологии.
Объект исследования – участки где используются системы видеоанализа для охраны периметра.
Предметы исследования – методология автоматизированного проектирования и оценки эффективности системы безопасности, разработанная компанией «Амулет»; всепогодные камеры семейства «МВК» компании «БайтЭрг», видеосервер «VideoСервер iX» компании «Агрегатор»; устройство «MagicBox» с периметральной видеоаналитикой компаниии «Синезис»; а также платформа видеонаблюдения «Интеллект» компании «iTV».

1. Анализируем системы видеоаналитики. Часть 2. [Электронный ресурс]. – Режим доступа: http://www.secuteck.ru/articles2/ip-security/analiziruem-sistemy-videoanalitiki/.
2. Система видеонаблюдения для крупного объекта
Встроенная видеоаналитика. [Электронный ресурс]. – Режим доступа: http://www.secuteck.ru/articles2/videonabl/sistema-videonabludeniya-dlya-krypnogo-obekta/.
3. Видеонаблюдение: юридические аспекты. [Электронный ресурс]. – Режим доступа: http://www.lidings.com/ru/articles2?id=47.
4. Применение видеоаналитики в комплексных системах безопасности. [Электронный ресурс]. – Режим доступа: http://sec4all.net/modules/myarticles/article.php?storyid=1632.
5. Опыт внедрения многокамерной видеоаналитики для охраны периметра. [Электронный ресурс]. – Режим доступа: http://synesis.ru/blog/article/opyit-vnedreniya-mnogokamernoj-videoanalitiki-dlya-oxranyi-perimetra.
6. Видеоаналитика. [Электронный ресурс]. – Режим доступа: http://synesis.ru/technology/videoanalitika.
7. Видеоаналитика. [Электронный ресурс]. – Режим доступа: https://ru.wikipedia.org/wiki/%D0%92%D0%B8%D0%B4%D0%B5%D0%BE%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D1%82%D0%B8%D0%BA%D0%B0.

Форма заказа новой работы

Не подошла эта работа?

Закажи новую работу, сделанную по твоим требованиям

Оставляя свои контактные данные и нажимая «Заказать Курсовую работу», я соглашаюсь пройти процедуру регистрации на Платформе, принимаю условия Пользовательского соглашения и Политики конфиденциальности в целях заключения соглашения.

Фрагменты работ

Видеоаналитика (video analytics)[1,7] — аппаратно-программное обеспечение или технология, использующие методы компьютерного зрения для автоматизированного сбора данных на основании анализа потокового видео (видеоанализа). Видеоаналитика опирается на алгоритмы обработки изображения и распознавания образов, позволяющие анализировать видео без прямого участия человека. Видеоаналитика используется в составе интеллектуальных систем видеонаблюдения (CCTV, охранного телевидения), управления бизнесом (business intelligence, BI) и видеопоиска.

Функции видеоаналитики
В зависимости от целей, видеоаналитика может реализовать как одну, так и несколько базовых функций:
• Обнаружение объектов (object detection). Как правило, обнаружение объектов в поле зрения камеры производиться при помощи видеодетекторов движения. Основное отличие видеоаналитики от ИК-датчиков движения состоит в возможности локализации (выделении) и независимого анализа сразу нескольких объектов. Если движение не является достаточным признаком для локализации объекта в кадре, то обнаружение может производиться при помощи шаблонов. Например, обнаружение лиц людей, номерных знаков автомобилей или обнаружение малоподвижных морских целей может быть реализовано при помощи признаков Хаара.
• Слежение за объектами (object tracking). Алгоритмы слежения (сопровождения) позволяют получить частную траекторию движения объекта как в поле зрения одной камеры, так и обобщенную траекторию по данным сразу нескольких камер. Слежение необходимо, чтобы проанализировать поведение объекта по его траектории, например, определить движение человека против потока или движение с повышенной скоростью. Кроме этого, слежение необходимо для исключения повторных срабатываний систем видеоаналитики на одни и те же объекты. Профессиональные системы работают по правилу «один тревожный объект – одно срабатывание» для достижения высокой продуктивности оператора.
• Классификация объектов (object classification). Некоторые системы видеоаналитики классифицируют объекты для фильтрации оперативных уведомлений или результатов поиска. Например, типовой классификатор объектов, используя признаки формы и абсолютные размеры, распределяет объекты на группы: человек, группа людей, транспортное средство. Более сложные классификаторы в системах видеоаналитики для ритейла могут определить пол или возвратную группу человека.
• Идентификация объектов (object identification). Идентификация объектов является наиболее сложным компонентом систем видеоаналитики. Современные системы позволяют идентифицировать людей по биометрическим признакам лица или транспортные средства – по номерным знакам. Идентификация может быть реализована при помощи дополнительных средств за рамками видеоаналитики: на основе отпечатков пальцев, банковской карты, билета, пропуска или идентификатора мобильного устройства.

Рис. 1 Идентификация объектов
• Обнаружение (распознавание) ситуаций. Видеоаналитика позволяет не только выделять объекты из потокового видео, но и распознавать тревожные ситуации на основе анализа поведения данного объекта, что не дает сделать обычная система видеонаблюдения. Также ситуационная видеоаналитика может автоматически детектировать пересечение сигнальной линии, падение людей, запрещенную парковку и возникновение пожара.

Рис. 2 Обнаружение (распознавание) ситуаций
Результатами работы видеоаналитики являются события (сообщения), которые могут быть переданы оператору системы видеонаблюдения или записаны в видеоархив для последующего поиска (пример событий, поддерживаемых платформой Kipod). Кроме этого, видеоаналитика формирует метаданные, то есть структуры данных, которые описывают содержание каждого кадра видеопоследовательности. Метаданные содержат такую информацию как местоположение и идентификаторы объектов (как правило, в виде тревожной рамки), траекторию и скорость движения объектов, данные о разделении или слиянии объектов, данные о возникновении и окончании тревожной ситуации. Метаданные записываются в видеоархив и воспроизводятся вместе с видео.




Видеоаналитика может иметь расширенные функции, такие как:
• Прогнозирование поведения объекта или возникновения ситуаций (например, образование очереди на кассе через 15 минут с учетом числа зашедших покупателей и числа работающих касс);
• Интеллектуальное сжатие видеоконтента с учетом интереса потребителя (например, система передает только видео, содержащие тревожные ситуации);
• Ранжирование (определение приоритета) событий видеоаналитики;
• Формирование производных видеоданных (интегральный кадр, таймплапс)
• Удаление персональных данных из видеоряда, например, при помощи детектора лиц и номерных знаков.
Целью данной работы является полное рассмотрение систем видеоаналитики, начиная от самого понятия функционала и возможностей заканчивая правовыми актами и законодательством. Чтоб процесс изучения данных систем был более понятен будут приведены различные примеры и реализации данной технологии.
Объект исследования – участки где используются системы видеоанализа для охраны периметра.
Предметы исследования – методология автоматизированного проектирования и оценки эффективности системы безопасности, разработанная компанией «Амулет»; всепогодные камеры семейства «МВК» компании «БайтЭрг», видеосервер «VideoСервер iX» компании «Агрегатор»; устройство «MagicBox» с периметральной видеоаналитикой компаниии «Синезис»; а также платформа видеонаблюдения «Интеллект» компании «iTV».

Введение ……………………………………………………………….……….3
ГЛАВА 1. Существующие технологии видеоаналитики……………..………...8
1.1. Основные типы видеоаналитики………………………………………....8
1.2. Архитектуры системы видеоаналитики.……………………..………...11
1.1. Способы определения тревожных ситуаций……………………..……13
1.1. Международные стандарты…………………………………...…...……13
1.1. Области применения видеоаналитики………………………….....……14
ГЛАВА 2. Опыт внедрения многокамерной видеоаналитики для охраны периметра………………………………………………………….……………..17
2.1. Описание объекта потенциальные угрозы и задачи системы видеонаблюдения. ………….…….………………………………….…………. 17
2.2Аппаратное обеспечение и размещение камер.…………….…….……. 19
2.3. Приемная часть системы видеонаблюдения……………….………......24
2.1. Уличная видеоаналитика..………………………….…….……………..25
2.1. Оценка качества изображения..………………………….……..……….29
2.1. Многокамерное сопровождение..………………………….…….……..34
ГЛАВА 3. Видеонаблюдение правовые акты и законы..…….………………..38
Заключение….………………………………………….………………….……47
Список использованной литературы………………….………………………..48

Целью данной работы является полное рассмотрение систем видеоаналитики, начиная от самого понятия функционала и возможностей заканчивая правовыми актами и законодательством. Чтоб процесс изучения данных систем был более понятен будут приведены различные примеры и реализации данной технологии.
Объект исследования – участки где используются системы видеоанализа для охраны периметра.
Предметы исследования – методология автоматизированного проектирования и оценки эффективности системы безопасности, разработанная компанией «Амулет»; всепогодные камеры семейства «МВК» компании «БайтЭрг», видеосервер «VideoСервер iX» компании «Агрегатор»; устройство «MagicBox» с периметральной видеоаналитикой компаниии «Синезис»; а также платформа видеонаблюдения «Интеллект» компании «iTV».

1. Анализируем системы видеоаналитики. Часть 2. [Электронный ресурс]. – Режим доступа: http://www.secuteck.ru/articles2/ip-security/analiziruem-sistemy-videoanalitiki/.
2. Система видеонаблюдения для крупного объекта
Встроенная видеоаналитика. [Электронный ресурс]. – Режим доступа: http://www.secuteck.ru/articles2/videonabl/sistema-videonabludeniya-dlya-krypnogo-obekta/.
3. Видеонаблюдение: юридические аспекты. [Электронный ресурс]. – Режим доступа: http://www.lidings.com/ru/articles2?id=47.
4. Применение видеоаналитики в комплексных системах безопасности. [Электронный ресурс]. – Режим доступа: http://sec4all.net/modules/myarticles/article.php?storyid=1632.
5. Опыт внедрения многокамерной видеоаналитики для охраны периметра. [Электронный ресурс]. – Режим доступа: http://synesis.ru/blog/article/opyit-vnedreniya-mnogokamernoj-videoanalitiki-dlya-oxranyi-perimetra.
6. Видеоаналитика. [Электронный ресурс]. – Режим доступа: http://synesis.ru/technology/videoanalitika.
7. Видеоаналитика. [Электронный ресурс]. – Режим доступа: https://ru.wikipedia.org/wiki/%D0%92%D0%B8%D0%B4%D0%B5%D0%BE%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D1%82%D0%B8%D0%BA%D0%B0.

Купить эту работу

Интеллектуализация системы видеонаблюдения

1000 ₽

или заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 500 ₽

Гарантии Автор24

Изображения работ

Страница работы
Страница работы
Страница работы

Понравилась эта работа?

или

12 марта 2017 заказчик разместил работу

Выбранный эксперт:

Автор работы
abrutsze
4.9
Купить эту работу vs Заказать новую
2 раза Куплено Выполняется индивидуально
Не менее 40%
Исполнитель, загружая работу в «Банк готовых работ» подтверждает, что уровень оригинальности работы составляет не менее 40%
Уникальность Выполняется индивидуально
Сразу в личном кабинете Доступность Срок 1—6 дней
1000 ₽ Цена от 500 ₽

5 Похожих работ

Отзывы студентов

Отзыв pocya об авторе abrutsze 2016-06-22
Курсовая работа

Благодарю автора за ответственное отношение к выполнению заказа.

Общая оценка 5
Отзыв Анна Петрова об авторе abrutsze 2014-05-15
Курсовая работа

Огромная благодарность автору за выполненную работу!Преподаватель очень хвалил работу

Общая оценка 5
Отзыв Филипп Минаев об авторе abrutsze 2016-05-23
Курсовая работа

спасибо за работу!

Общая оценка 5
Отзыв hakeng об авторе abrutsze 2014-09-30
Курсовая работа

Все сделано отлично и в срок, все исправления были сделаны оперативно. Отличный автор!

Общая оценка 5

другие учебные работы по предмету

Готовая работа

Высокоскоростная корпоративная, локальная вычислительная сеть предприятия

Уникальность: от 40%
Доступность: сразу
1490 ₽
Готовая работа

Программный комплекс задач поддержки процесса использования смарт-карт клиентами АЗС

Уникальность: от 40%
Доступность: сразу
2000 ₽
Готовая работа

Защита локальной сети программными средствами microsoft

Уникальность: от 40%
Доступность: сразу
1000 ₽
Готовая работа

Разработка мобильного приложения для планирования и организации задач пользователя

Уникальность: от 40%
Доступность: сразу
2400 ₽
Готовая работа

Информационная веб-система организации процесса чартеринга яхт

Уникальность: от 40%
Доступность: сразу
2000 ₽
Готовая работа

Обзор рынка программных средств self-service BI инструментов

Уникальность: от 40%
Доступность: сразу
600 ₽
Готовая работа

Разработка голосового чата для локальной сети

Уникальность: от 40%
Доступность: сразу
1800 ₽
Готовая работа

Конфигурирование поисковых серверов для сети Интернет и локальной сети

Уникальность: от 40%
Доступность: сразу
1000 ₽
Готовая работа

Коммутации в телеграфных сетях

Уникальность: от 40%
Доступность: сразу
1500 ₽
Готовая работа

Динамические структуры данных

Уникальность: от 40%
Доступность: сразу
600 ₽
Готовая работа

Разработка и интегрирование в технические компании информационных веб-ресурсов

Уникальность: от 40%
Доступность: сразу
2000 ₽
Готовая работа

Разработка системы "Умный дом" для использования в загородном доме

Уникальность: от 40%
Доступность: сразу
1000 ₽