Работа выполнена качественно, с учетом всех пожеланий
Подробнее о работе
Гарантия сервиса Автор24
Уникальность не ниже 50%
Новые направления в математике возникают либо в результате естественного внутреннего анализа самих математических концепций, либо не менее естественного стремления к расширению области её приложений. Слово «либо» здесь не в коей мере нельзя понимать как исключающее пересечение. Наоборот, внутреннее развитие математики обычно происходит в направлениях, соответствующих тенденциям возникновения потребностей в них. Теория вероятностных распределений в банаховых пространствах не составляет исключения. После появления в начале прошлого века лебеговой теории интегрирования стало совершенно естественным стремление расширить эту теорию, охватив наряду с функциями одного или нескольких числовых переменных и функции, заданные в бесконечномерных (векторных) пространствах.
Систематическое изучение вероятностных распределений в банаховом пространстве было начато в работах Э.Мурье и Р.Форте в начале пятидесятых годов прошлого века.
В настоящее время изучение вопроса о вероятностях попадания в заданную область случайного вектора в гильбертовых пространствах осуществляется различными авторами. В частности, одной из последних публикаций является [7].
Введение……………………………………………………………………….…..6
1 Предварительные сведения …………………………………………………….7
2 Обзор известных результатов ……………………………………….................8
3 Гауссовское распределение в гильбертовом пространстве ……...................12
4 Вероятность попадания в шар гауссовского случайного вектора из
гильбертова пространства ………………………………………………........13
5 Верхние оценки вероятностей попадания гауссовского вектора в шар …..16
Заключение……………………………………………………………………….26
Список использованных источников…………………………………………...27
Приложение А. Текст программы………………………………………………28
Приложение Б. Полученные результаты……………………………………….30
Объектом исследования является вероятность попадания гауссовского случайного вектора в шар. Рассматривается общий случай гильбертова пространства Н.
Цель работы - нахождение верхней оценки вероятности попадания гауссовского случайного вектора в шар.
В результате исследования были получены верхние (численные) оценки вероятностей попадания гауссовского случайного вектора в шар в общем случае гильбертова пространства Н. В процессе выполнения работы была написана программа, используя которую можно получить готовые результаты, вводя лишь исходные данные (радиус шара и собственное значение - ).
1. Боровков, А. А. Теория вероятностей [Текст]: учеб. / А. А. Боровков. – М.: Наука, 1976. - 351с.
2. Вахания, Н. Н. Вероятностные распределения в банаховых пространствах [Текст]: учеб. / Н. Н. Вахания, В. И. Тариеладзе, С. А. Чобанян. - М.: Наука, 1985. - 368с.
3. Гихман, И. И. Теория случайных процессов [Текст]. В 2 т. Т.1. Теория случайных процессов: учеб. / И. И. Гихман, А. В. Скороход. - М.: Наука, 1971. - 363с.
4. Колмогоров, А. Н. Элементы теории функций и функционального анализа [Текст]: учебн. / А. Н. Колмогоров, С. В. Фомин. – М.: Наука, 1976. – 543с.
5. Круглов, В. М. Дополнительные главы теории вероятностей [Текст]: учебн. / В. М. Круглов. – М.: Наука, 1974. – 398с.
6. Фихтенгольц, Г. М. Курс дифференциального и интегрального исчисления [Текст]. В 3 т. Т.2. Курс дифференциального и интегрального исчисления: учебн. / Г. М. Фихтенгольц. – М.: Наука, 1985. – 800с.
7. Розовский, Л. В. О гауссовой мере шаров в гильбертовом пространстве / В. М. Круглов // Теория вероятностей и её применения. – 2008. - №2. – С. 382-389.
8. Сытая, Г. Н. О некоторых асимптотических представлениях для гауссовой меры в гильбертовом пространстве / Г. Н. Сытая // Теория стохастических процессов. В 2 т. Т. 2. Теория стохастических процессов. - М.: Наука, 1974. – С. 94-104.
9. Ширяева Т. А. Оценка вероятностей попадания гауссовского вектора в гильбертов шар / Т. А. Ширяева, И. Л. Ваганова // Статистическая метафизика: сб.науч.тр. / Красноярск, 2001.- С. 179-181.
10. Ширяева Т.А. О некоторых верхних вероятностных оценках в теории надежности вычислительных систем [Текст]: автореф. дис. …канд. физ.-мат. наук / Ширяева Тамара Алексеевна. – КГТУ, 2002. – С. 74-77.
Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям
Новые направления в математике возникают либо в результате естественного внутреннего анализа самих математических концепций, либо не менее естественного стремления к расширению области её приложений. Слово «либо» здесь не в коей мере нельзя понимать как исключающее пересечение. Наоборот, внутреннее развитие математики обычно происходит в направлениях, соответствующих тенденциям возникновения потребностей в них. Теория вероятностных распределений в банаховых пространствах не составляет исключения. После появления в начале прошлого века лебеговой теории интегрирования стало совершенно естественным стремление расширить эту теорию, охватив наряду с функциями одного или нескольких числовых переменных и функции, заданные в бесконечномерных (векторных) пространствах.
Систематическое изучение вероятностных распределений в банаховом пространстве было начато в работах Э.Мурье и Р.Форте в начале пятидесятых годов прошлого века.
В настоящее время изучение вопроса о вероятностях попадания в заданную область случайного вектора в гильбертовых пространствах осуществляется различными авторами. В частности, одной из последних публикаций является [7].
Введение……………………………………………………………………….…..6
1 Предварительные сведения …………………………………………………….7
2 Обзор известных результатов ……………………………………….................8
3 Гауссовское распределение в гильбертовом пространстве ……...................12
4 Вероятность попадания в шар гауссовского случайного вектора из
гильбертова пространства ………………………………………………........13
5 Верхние оценки вероятностей попадания гауссовского вектора в шар …..16
Заключение……………………………………………………………………….26
Список использованных источников…………………………………………...27
Приложение А. Текст программы………………………………………………28
Приложение Б. Полученные результаты……………………………………….30
Объектом исследования является вероятность попадания гауссовского случайного вектора в шар. Рассматривается общий случай гильбертова пространства Н.
Цель работы - нахождение верхней оценки вероятности попадания гауссовского случайного вектора в шар.
В результате исследования были получены верхние (численные) оценки вероятностей попадания гауссовского случайного вектора в шар в общем случае гильбертова пространства Н. В процессе выполнения работы была написана программа, используя которую можно получить готовые результаты, вводя лишь исходные данные (радиус шара и собственное значение - ).
1. Боровков, А. А. Теория вероятностей [Текст]: учеб. / А. А. Боровков. – М.: Наука, 1976. - 351с.
2. Вахания, Н. Н. Вероятностные распределения в банаховых пространствах [Текст]: учеб. / Н. Н. Вахания, В. И. Тариеладзе, С. А. Чобанян. - М.: Наука, 1985. - 368с.
3. Гихман, И. И. Теория случайных процессов [Текст]. В 2 т. Т.1. Теория случайных процессов: учеб. / И. И. Гихман, А. В. Скороход. - М.: Наука, 1971. - 363с.
4. Колмогоров, А. Н. Элементы теории функций и функционального анализа [Текст]: учебн. / А. Н. Колмогоров, С. В. Фомин. – М.: Наука, 1976. – 543с.
5. Круглов, В. М. Дополнительные главы теории вероятностей [Текст]: учебн. / В. М. Круглов. – М.: Наука, 1974. – 398с.
6. Фихтенгольц, Г. М. Курс дифференциального и интегрального исчисления [Текст]. В 3 т. Т.2. Курс дифференциального и интегрального исчисления: учебн. / Г. М. Фихтенгольц. – М.: Наука, 1985. – 800с.
7. Розовский, Л. В. О гауссовой мере шаров в гильбертовом пространстве / В. М. Круглов // Теория вероятностей и её применения. – 2008. - №2. – С. 382-389.
8. Сытая, Г. Н. О некоторых асимптотических представлениях для гауссовой меры в гильбертовом пространстве / Г. Н. Сытая // Теория стохастических процессов. В 2 т. Т. 2. Теория стохастических процессов. - М.: Наука, 1974. – С. 94-104.
9. Ширяева Т. А. Оценка вероятностей попадания гауссовского вектора в гильбертов шар / Т. А. Ширяева, И. Л. Ваганова // Статистическая метафизика: сб.науч.тр. / Красноярск, 2001.- С. 179-181.
10. Ширяева Т.А. О некоторых верхних вероятностных оценках в теории надежности вычислительных систем [Текст]: автореф. дис. …канд. физ.-мат. наук / Ширяева Тамара Алексеевна. – КГТУ, 2002. – С. 74-77.
Купить эту работу vs Заказать новую | ||
---|---|---|
0 раз | Куплено | Выполняется индивидуально |
Не менее 40%
Исполнитель, загружая работу в «Банк готовых работ» подтверждает, что
уровень оригинальности
работы составляет не менее 40%
|
Уникальность | Выполняется индивидуально |
Сразу в личном кабинете | Доступность | Срок 1—6 дней |
1800 ₽ | Цена | от 3000 ₽ |
Не подошла эта работа?
В нашей базе 55693 Дипломной работы — поможем найти подходящую