Автор24

Информация о работе

Подробнее о работе

Страница работы

Наилучшие приближения непрерывных периодических функций тригонометрическими полиномами

  • 50 страниц
  • 2013 год
  • 374 просмотра
  • 0 покупок
Автор работы

diplomstud

Выполняю студенческие работы по различным предметам.

1500 ₽

Работа будет доступна в твоём личном кабинете после покупки

Гарантия сервиса Автор24

Уникальность не ниже 50%

Фрагменты работ

В настоящей работе мы рассматриваем следующие задачи:
1. При каких ограничениях на непрерывную функцию F(u) (-1  u  +1) её наилучшие приближения En [F;-1,+1] обыкновенными многочленами имеют заданный порядок (n-1 )?
2. При каких ограничениях на непрерывную периодическую функцию f (x) её наилучшее приближение En[f] тригонометрическими полиномами имеют заданный порядок (n-1 )?
Подстановка u=cos(x) сводит задачу 1 к задаче 2. Достаточно, следовательно, рассматривать лишь задачу 2.
Мы ограничимся случаем, когда  N , для некоторого  , где  - функция сравнения р-го порядка и для 0

Наименование Стр.
Введение 3
§1. Некоторые вспомогательные определения 7
§2. Простейшие свойства модулей непрерывности 20
§3. Обобщение теоремы Джексона 24
§4. Обобщение неравенства С.Н.Бернштейна 27
§5. Дифференциальные свойства тригонометрических полиномов, аппроксимирующих заданную функцию 30
§6. Обобщение обратных теорем С. Н. Бернштейна и Ш. Валле-Пуссена 34
§7. Основная теорема 44
§8. Решение задач 47
Литература 50

Дипломная работа посвящена исследованию наилучших приближений непрерывных периодических функций тригонометрическими полиномами. В ней даются необходимые и достаточные условия для того, чтобы наилучшие приближения имели заданный (степенной) порядок убывания.
Дипломная работа носит реферативный характер и состоит из “Введения” и восьми параграфов.

1. Бернштейн С.Н. О свойствах однородных функциональных классов // Доклады Ак. Наук СССР,-1947.-№57.-с.111-114.
2. Стечкин С.Б. О порядке наилучших приближений непрерывных функций // Доклады Ак. Наук СССР,-1949.-№65.-с.135-137.
3. Бернштейн С.Н. О наилучшем приближении непрерывных функций посредством многочленов данной степени // Сообщ. Харьк. Матем. о-ва (2), -1912.-№13.-с.49-144.
4. Бернштейн С.Н. Экстремальные свойства полиномов и наилучшее приближение непрерывных функций одной вещественной переменной. Часть I,-М.-Л.,-1937.
5. Никольский С. Обобщение одного неравенства С.Н.Бернштейна // Доклады Ак. Наук СССР,-1948.-№65.-с.135-137.
6. Гончаров В.Л. Теория интерполирования и приближения функций.-М.-Л.,-1934.
7. Дзядык В.К. Введение в теорию равномерного приближения функций полиномами. -М.: Наука.-1977.-с.512.
8. Стечкин С.Б. О порядке наилучших приближений непрерывных функций // Доклады Ак. Наук СССР,-1949.-№65.-с.135-137.
9. Тиман А.Ф. Теория приближения функций функций действительного переменного. -М.:ГИФМЛ,-1960.-с. 624.
10. Ахиезер Н.И. Лекции по теории аппроксимаций.-М.:ГИТТЛ,-1947.-324.
11. Арестов В.В. О равномерной регуляризации задачи вычисления значений оператора // Математические заметки,-т.22.-1977.-№2.-с.231-243.
12. Стечкин С.Б. О порядке наилучших приближений непрерывных функций // Изв. АН СССР-Математика,-1931.-№15.-с.219-242.

Форма заказа новой работы

Не подошла эта работа?

Закажи новую работу, сделанную по твоим требованиям

Оставляя свои контактные данные и нажимая «Заказать Дипломную работу», я соглашаюсь пройти процедуру регистрации на Платформе, принимаю условия Пользовательского соглашения и Политики конфиденциальности в целях заключения соглашения.

Фрагменты работ

В настоящей работе мы рассматриваем следующие задачи:
1. При каких ограничениях на непрерывную функцию F(u) (-1  u  +1) её наилучшие приближения En [F;-1,+1] обыкновенными многочленами имеют заданный порядок (n-1 )?
2. При каких ограничениях на непрерывную периодическую функцию f (x) её наилучшее приближение En[f] тригонометрическими полиномами имеют заданный порядок (n-1 )?
Подстановка u=cos(x) сводит задачу 1 к задаче 2. Достаточно, следовательно, рассматривать лишь задачу 2.
Мы ограничимся случаем, когда  N , для некоторого  , где  - функция сравнения р-го порядка и для 0

Наименование Стр.
Введение 3
§1. Некоторые вспомогательные определения 7
§2. Простейшие свойства модулей непрерывности 20
§3. Обобщение теоремы Джексона 24
§4. Обобщение неравенства С.Н.Бернштейна 27
§5. Дифференциальные свойства тригонометрических полиномов, аппроксимирующих заданную функцию 30
§6. Обобщение обратных теорем С. Н. Бернштейна и Ш. Валле-Пуссена 34
§7. Основная теорема 44
§8. Решение задач 47
Литература 50

Дипломная работа посвящена исследованию наилучших приближений непрерывных периодических функций тригонометрическими полиномами. В ней даются необходимые и достаточные условия для того, чтобы наилучшие приближения имели заданный (степенной) порядок убывания.
Дипломная работа носит реферативный характер и состоит из “Введения” и восьми параграфов.

1. Бернштейн С.Н. О свойствах однородных функциональных классов // Доклады Ак. Наук СССР,-1947.-№57.-с.111-114.
2. Стечкин С.Б. О порядке наилучших приближений непрерывных функций // Доклады Ак. Наук СССР,-1949.-№65.-с.135-137.
3. Бернштейн С.Н. О наилучшем приближении непрерывных функций посредством многочленов данной степени // Сообщ. Харьк. Матем. о-ва (2), -1912.-№13.-с.49-144.
4. Бернштейн С.Н. Экстремальные свойства полиномов и наилучшее приближение непрерывных функций одной вещественной переменной. Часть I,-М.-Л.,-1937.
5. Никольский С. Обобщение одного неравенства С.Н.Бернштейна // Доклады Ак. Наук СССР,-1948.-№65.-с.135-137.
6. Гончаров В.Л. Теория интерполирования и приближения функций.-М.-Л.,-1934.
7. Дзядык В.К. Введение в теорию равномерного приближения функций полиномами. -М.: Наука.-1977.-с.512.
8. Стечкин С.Б. О порядке наилучших приближений непрерывных функций // Доклады Ак. Наук СССР,-1949.-№65.-с.135-137.
9. Тиман А.Ф. Теория приближения функций функций действительного переменного. -М.:ГИФМЛ,-1960.-с. 624.
10. Ахиезер Н.И. Лекции по теории аппроксимаций.-М.:ГИТТЛ,-1947.-324.
11. Арестов В.В. О равномерной регуляризации задачи вычисления значений оператора // Математические заметки,-т.22.-1977.-№2.-с.231-243.
12. Стечкин С.Б. О порядке наилучших приближений непрерывных функций // Изв. АН СССР-Математика,-1931.-№15.-с.219-242.

Купить эту работу

Наилучшие приближения непрерывных периодических функций тригонометрическими полиномами

1500 ₽

или заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 3000 ₽

Гарантии Автор24

Изображения работ

Страница работы
Страница работы
Страница работы

Понравилась эта работа?

или

9 декабря 2015 заказчик разместил работу

Выбранный эксперт:

Автор работы
diplomstud
4.7
Выполняю студенческие работы по различным предметам.
Купить эту работу vs Заказать новую
0 раз Куплено Выполняется индивидуально
Не менее 40%
Исполнитель, загружая работу в «Банк готовых работ» подтверждает, что уровень оригинальности работы составляет не менее 40%
Уникальность Выполняется индивидуально
Сразу в личном кабинете Доступность Срок 1—6 дней
1500 ₽ Цена от 3000 ₽

5 Похожих работ

Отзывы студентов

Отзыв wwwoman об авторе diplomstud 2015-03-14
Дипломная работа

Работа выполнена качественно, с учетом всех пожеланий

Общая оценка 5
Отзыв Екатерина об авторе diplomstud 2014-06-25
Дипломная работа

Работа написана грамотно, выполнены все пожелания. Спасибо большое! Процент уникальности 85%! Автор сотрудничает, выполняет все пожелания и требования.

Общая оценка 5
Отзыв zaika об авторе diplomstud 2016-03-31
Дипломная работа

Спасибо вам огромное! Прекрасная работа!! Работать с вами одно удовольствие!

Общая оценка 5
Отзыв Мурат Баев об авторе diplomstud 2015-03-22
Дипломная работа

очень супер мы довольны !! спс вам огромное !!!)

Общая оценка 5

другие учебные работы по предмету

Готовая работа

Численное моделирование двумерной обратной задачи для параболического уравнения

Уникальность: от 40%
Доступность: сразу
5000 ₽
Готовая работа

Технология изучения многочленов в классах с углубленным изучением математики.

Уникальность: от 40%
Доступность: сразу
2300 ₽
Готовая работа

Задачи и методы аналитической теории чисел

Уникальность: от 40%
Доступность: сразу
1000 ₽
Готовая работа

Использование различных средств оценивания в контексте подготовки к единому государственному экзамену по математике

Уникальность: от 40%
Доступность: сразу
25000 ₽
Готовая работа

Численный анализ газодинамических течений

Уникальность: от 40%
Доступность: сразу
2500 ₽
Готовая работа

Развитие познавательных УУД обучающихся 5-х классов при обучении решению текстовых задач по математике

Уникальность: от 40%
Доступность: сразу
1650 ₽
Готовая работа

Тестовые задания в теории функций комплексного переменного

Уникальность: от 40%
Доступность: сразу
2500 ₽
Готовая работа

Для МЕХМАТА. Пространства двузначных функций с топологией поточечной сходимости. УНИКАЛЬНОЕ НАУЧНОЕ ИССЛЕДОВАНИЕ.

Уникальность: от 40%
Доступность: сразу
7500 ₽
Готовая работа

Формирование эвристик в процессе обучения младших школьников решению текстовых задач».

Уникальность: от 40%
Доступность: сразу
4000 ₽
Готовая работа

Первообразная в школьном курсе математики: теория, методика преподавания, системы упражнений, контрольно-измерительные материалы

Уникальность: от 40%
Доступность: сразу
2800 ₽
Готовая работа

Геометрия треугольника

Уникальность: от 40%
Доступность: сразу
2000 ₽
Готовая работа

Методы технического анализа на валютном рынке

Уникальность: от 40%
Доступность: сразу
2000 ₽