Автор24

Информация о работе

Подробнее о работе

Страница работы

РЕШЕНИЕ ОПТИМИЗАЦИОННЫХ ЗАДАЧ МЕТОДОМ «ВЕТВЕЙ И ГРАНИЦ»

  • 61 страниц
  • 2017 год
  • 288 просмотров
  • 0 покупок
Автор работы

user986395

Преподаватель

1000 ₽

Работа будет доступна в твоём личном кабинете после покупки

Гарантия сервиса Автор24

Уникальность не ниже 50%

Фрагменты работ

Частью линейного программирования являются транспортные задачи, которые играют особую роль в уменьшении транспортных издержек, как для различных предприятий, так и для отдельных людей в частности. Одна из самых известных и важных задач транспортной логистики (и класса задач оптимизации в целом) - задача коммивояжера. Также встречается название «задача о бродячем торговце». Суть задачи сводится к поиску оптимального, то есть кратчайшего пути проходящего через некие пункты по одному разу. Любая задача транспортного типа, как задача линейно¬го программирования, может быть решена симплекс-методом, однако матрица системы ограничений транспортных задач весьма своеобразна, в связи с чем, разработаны более эффективные вычислительные методы. И один из них, который будет рассматриваться в выпускной квалификационной работе, это метод ветвей и границ, использующий направленный перебор вариантов с дальнейшим отсечением не нужных.
Актуальность. Данная работа даст возможность минимизировать затраты на перемещение, что в дальнейшем будет способствовать экономии времени и денег, что немало важно в наше время. Тем более для людей, которые часто путешествуют, появится возможность найти оптимальный путь для посещения всех интересующих их мест.
Цель выпускной квалификационной работы - решение базовой оптимизационной задачи Коммивояжёра методом ветвей и границ и реализация этого алгоритма в среде программирования Delphi.
Задачи выпускной квалификационной работы:
1) рассмотреть оптимизационные задачи и обобщённую оптимизационную модель.
2) рассмотреть методы оптимизации.
3) сделать обзор методов решения для задачи Коммивояжёра.
4) выявить плюсы использования метода ветвей и границ.
5) решить задачу Коммивояжёра методом ветвей и границ

Содержание

Введение 3
Глава 1. Оптимизация в математике 5
1.1. Основные понятия. 5
1.2. Оптимизационные модели. 7
1.2.1. Понятие оптимизационной модели и её разновидности. 7
1.2.2. Обобщенная оптимизационная модель. 7
1.3. Классификация методов оптимизации. 9
1.4. Оптимизационные задачи. 24
1.4.1. Классификация оптимизационных задач по содержанию. 24
1.4.2. Классификация оптимизационных задач исходя из математической трактовки. 29
1.4.3. Задача Коммивояжера. 32
Глава 2. Математическое программирование 33
2.1 Понятие математического программирования и его разновидности. 33
2.2. Общая постановка задачи математического программирования. 35
2.3. Обзор методов решения для задачи Коммивояжера. 38
2.4. Метод ветвей и границ. 41
2.5. Решение задачи коммивояжера методом ветвей и границ. 43
Заключение 54
Список литературы 55
Приложения 56
Приложение 1: Процедура чтения матрицы из Edit - ов. 56
Приложение 2: Реализация алгоритма решения задачи Коммивояжёра методом ветвей и границ в среде программирования Delphi. 56

В настоящее время оптимизация находит применение в науке, технике и в любой другой области человеческой деятельности.
Оптимизация - это целенаправленная деятельность, заключающаяся в получении наилучших результатов при соответствующих условиях.
Поиски оптимальных решений привели к созданию специальных математических методов и уже в 18 веке были заложены математические основы оптимизации. Однако до второй половины 20 века методы оптимизации во многих областях науки и техники применялись очень редко, поскольку практическое использование математических методов оптимизации требовало огромной вычислительной работы, которую без ЭВМ реализовать было крайне трудно, а в ряде случаев - невозможно.
В настоящее время новейшие достижения математики и современной вычислительной техники находят все более широкое применение в планировании. Этому способствует развитие таких разделов математики, как математическое программирование, теория игр, теория массового обслуживания, а также бурное развитие быстродействующей электронно-вычислительной техники. Уже накоплен достаточный опыт постановки и решения экономических задач с помощью математических методов.
Задачи, цель которых состоит в нахождении наилучшего (оптимального) варианта, с точки зрения некоторого критерия или критериев, называются оптимизационными. Оптимизационные задачи решаются с помощью оптимизационных моделей методами математического программирования.
Линейное программирование является одним из наиболее употребительных аппаратов математической теории оптимального принятия решений.

Список литературы
1. Асанов, М. О. Дискретная математика. Графы, матроиды, алгоритмы/ М. О. Асанов, В. А. Баранский, В. В. Расин - М.: Лань, 2010. - 368 с.
2. Белоусов, А. И. Дискретная математика. Серия: Математика в техническом университете /А. И. Белоусов, С. Б.Ткачев - Изд-во: МГТУ им. Н. Э. Баумана, 2001. - 744 с.
3. Васильков, Ю.В. Компьютерные технологии вычислений в математическом моделировании / Ю.В. Васильков, Н.Н. Василькова - М.: Финансы и статистика, 2002.- 256 с.
4. Данко, П.Е. Высшая математика в упражнениях и задачах: Ч. 1. / П.Е. Данко, А.Г. Попов, Т.Я. Кожевникова - М.: Высшая школа, 1999. - 304с.
5. Емельянов, В.В. Теория и практика эволюционного моделирования / В.В. Емельянов, В.В. Курейчик, В.М. Курейчик - М.: Физматлит, 2003. - 432с.
6. Зыков, А.А. Основы теории графов / А.А. Зыков - М. Вузовская книга, 2004. - 664 с.
7. Кирсанов, М. Н. Графы в Maple / М. Н. Кирсанов - М. Физматлит, 2007. - 168 c.
8. Лемешко, Б.Ю. Методы оптимизации / Б.Ю. Лемешко - Новосибирск: Изд-во НГТУ, 2009. – 126 с.
9. Мицель, А.А. Методы оптимизации. Часть 1: Учебное пособие / А.А. Мицель, А.А. Шелестов - Томск: Томский межвузовский центр дистанционного образования, 2002. - 192 с.
10. Новиков, Ф.А. Дискретная математика для программистов: 2-е изд. / Ф.А. Новиков - СПб.: Питер, 2005. - 364 с.
11. Окулов, С. А. Программирование в алгоритмах / С. А. Окулов - М.: Бином. Лаборатория знаний, 2007. - 384 с.
12. Хаггарти, Р. Дискретная математика для программистов. / Р. Хаггарти - М.: Техносфера, 2012. - 400 с.

Форма заказа новой работы

Не подошла эта работа?

Закажи новую работу, сделанную по твоим требованиям

Оставляя свои контактные данные и нажимая «Заказать Дипломную работу», я соглашаюсь пройти процедуру регистрации на Платформе, принимаю условия Пользовательского соглашения и Политики конфиденциальности в целях заключения соглашения.

Фрагменты работ

Частью линейного программирования являются транспортные задачи, которые играют особую роль в уменьшении транспортных издержек, как для различных предприятий, так и для отдельных людей в частности. Одна из самых известных и важных задач транспортной логистики (и класса задач оптимизации в целом) - задача коммивояжера. Также встречается название «задача о бродячем торговце». Суть задачи сводится к поиску оптимального, то есть кратчайшего пути проходящего через некие пункты по одному разу. Любая задача транспортного типа, как задача линейно¬го программирования, может быть решена симплекс-методом, однако матрица системы ограничений транспортных задач весьма своеобразна, в связи с чем, разработаны более эффективные вычислительные методы. И один из них, который будет рассматриваться в выпускной квалификационной работе, это метод ветвей и границ, использующий направленный перебор вариантов с дальнейшим отсечением не нужных.
Актуальность. Данная работа даст возможность минимизировать затраты на перемещение, что в дальнейшем будет способствовать экономии времени и денег, что немало важно в наше время. Тем более для людей, которые часто путешествуют, появится возможность найти оптимальный путь для посещения всех интересующих их мест.
Цель выпускной квалификационной работы - решение базовой оптимизационной задачи Коммивояжёра методом ветвей и границ и реализация этого алгоритма в среде программирования Delphi.
Задачи выпускной квалификационной работы:
1) рассмотреть оптимизационные задачи и обобщённую оптимизационную модель.
2) рассмотреть методы оптимизации.
3) сделать обзор методов решения для задачи Коммивояжёра.
4) выявить плюсы использования метода ветвей и границ.
5) решить задачу Коммивояжёра методом ветвей и границ

Содержание

Введение 3
Глава 1. Оптимизация в математике 5
1.1. Основные понятия. 5
1.2. Оптимизационные модели. 7
1.2.1. Понятие оптимизационной модели и её разновидности. 7
1.2.2. Обобщенная оптимизационная модель. 7
1.3. Классификация методов оптимизации. 9
1.4. Оптимизационные задачи. 24
1.4.1. Классификация оптимизационных задач по содержанию. 24
1.4.2. Классификация оптимизационных задач исходя из математической трактовки. 29
1.4.3. Задача Коммивояжера. 32
Глава 2. Математическое программирование 33
2.1 Понятие математического программирования и его разновидности. 33
2.2. Общая постановка задачи математического программирования. 35
2.3. Обзор методов решения для задачи Коммивояжера. 38
2.4. Метод ветвей и границ. 41
2.5. Решение задачи коммивояжера методом ветвей и границ. 43
Заключение 54
Список литературы 55
Приложения 56
Приложение 1: Процедура чтения матрицы из Edit - ов. 56
Приложение 2: Реализация алгоритма решения задачи Коммивояжёра методом ветвей и границ в среде программирования Delphi. 56

В настоящее время оптимизация находит применение в науке, технике и в любой другой области человеческой деятельности.
Оптимизация - это целенаправленная деятельность, заключающаяся в получении наилучших результатов при соответствующих условиях.
Поиски оптимальных решений привели к созданию специальных математических методов и уже в 18 веке были заложены математические основы оптимизации. Однако до второй половины 20 века методы оптимизации во многих областях науки и техники применялись очень редко, поскольку практическое использование математических методов оптимизации требовало огромной вычислительной работы, которую без ЭВМ реализовать было крайне трудно, а в ряде случаев - невозможно.
В настоящее время новейшие достижения математики и современной вычислительной техники находят все более широкое применение в планировании. Этому способствует развитие таких разделов математики, как математическое программирование, теория игр, теория массового обслуживания, а также бурное развитие быстродействующей электронно-вычислительной техники. Уже накоплен достаточный опыт постановки и решения экономических задач с помощью математических методов.
Задачи, цель которых состоит в нахождении наилучшего (оптимального) варианта, с точки зрения некоторого критерия или критериев, называются оптимизационными. Оптимизационные задачи решаются с помощью оптимизационных моделей методами математического программирования.
Линейное программирование является одним из наиболее употребительных аппаратов математической теории оптимального принятия решений.

Список литературы
1. Асанов, М. О. Дискретная математика. Графы, матроиды, алгоритмы/ М. О. Асанов, В. А. Баранский, В. В. Расин - М.: Лань, 2010. - 368 с.
2. Белоусов, А. И. Дискретная математика. Серия: Математика в техническом университете /А. И. Белоусов, С. Б.Ткачев - Изд-во: МГТУ им. Н. Э. Баумана, 2001. - 744 с.
3. Васильков, Ю.В. Компьютерные технологии вычислений в математическом моделировании / Ю.В. Васильков, Н.Н. Василькова - М.: Финансы и статистика, 2002.- 256 с.
4. Данко, П.Е. Высшая математика в упражнениях и задачах: Ч. 1. / П.Е. Данко, А.Г. Попов, Т.Я. Кожевникова - М.: Высшая школа, 1999. - 304с.
5. Емельянов, В.В. Теория и практика эволюционного моделирования / В.В. Емельянов, В.В. Курейчик, В.М. Курейчик - М.: Физматлит, 2003. - 432с.
6. Зыков, А.А. Основы теории графов / А.А. Зыков - М. Вузовская книга, 2004. - 664 с.
7. Кирсанов, М. Н. Графы в Maple / М. Н. Кирсанов - М. Физматлит, 2007. - 168 c.
8. Лемешко, Б.Ю. Методы оптимизации / Б.Ю. Лемешко - Новосибирск: Изд-во НГТУ, 2009. – 126 с.
9. Мицель, А.А. Методы оптимизации. Часть 1: Учебное пособие / А.А. Мицель, А.А. Шелестов - Томск: Томский межвузовский центр дистанционного образования, 2002. - 192 с.
10. Новиков, Ф.А. Дискретная математика для программистов: 2-е изд. / Ф.А. Новиков - СПб.: Питер, 2005. - 364 с.
11. Окулов, С. А. Программирование в алгоритмах / С. А. Окулов - М.: Бином. Лаборатория знаний, 2007. - 384 с.
12. Хаггарти, Р. Дискретная математика для программистов. / Р. Хаггарти - М.: Техносфера, 2012. - 400 с.

Купить эту работу

РЕШЕНИЕ ОПТИМИЗАЦИОННЫХ ЗАДАЧ МЕТОДОМ «ВЕТВЕЙ И ГРАНИЦ»

1000 ₽

или заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 3000 ₽

Гарантии Автор24

Изображения работ

Страница работы
Страница работы
Страница работы

Понравилась эта работа?

или

1 сентября 2017 заказчик разместил работу

Выбранный эксперт:

Автор работы
user986395
4.5
Преподаватель
Купить эту работу vs Заказать новую
0 раз Куплено Выполняется индивидуально
Не менее 40%
Исполнитель, загружая работу в «Банк готовых работ» подтверждает, что уровень оригинальности работы составляет не менее 40%
Уникальность Выполняется индивидуально
Сразу в личном кабинете Доступность Срок 1—6 дней
1000 ₽ Цена от 3000 ₽

5 Похожих работ

Отзывы студентов

Отзыв wwwoman об авторе user986395 2015-03-14
Дипломная работа

Работа выполнена качественно, с учетом всех пожеланий

Общая оценка 5
Отзыв Екатерина об авторе user986395 2014-06-25
Дипломная работа

Работа написана грамотно, выполнены все пожелания. Спасибо большое! Процент уникальности 85%! Автор сотрудничает, выполняет все пожелания и требования.

Общая оценка 5
Отзыв zaika об авторе user986395 2016-03-31
Дипломная работа

Спасибо вам огромное! Прекрасная работа!! Работать с вами одно удовольствие!

Общая оценка 5
Отзыв Мурат Баев об авторе user986395 2015-03-22
Дипломная работа

очень супер мы довольны !! спс вам огромное !!!)

Общая оценка 5

другие учебные работы по предмету

Готовая работа

Численное моделирование двумерной обратной задачи для параболического уравнения

Уникальность: от 40%
Доступность: сразу
5000 ₽
Готовая работа

Технология изучения многочленов в классах с углубленным изучением математики.

Уникальность: от 40%
Доступность: сразу
2300 ₽
Готовая работа

Задачи и методы аналитической теории чисел

Уникальность: от 40%
Доступность: сразу
1000 ₽
Готовая работа

Использование различных средств оценивания в контексте подготовки к единому государственному экзамену по математике

Уникальность: от 40%
Доступность: сразу
25000 ₽
Готовая работа

Численный анализ газодинамических течений

Уникальность: от 40%
Доступность: сразу
2500 ₽
Готовая работа

Развитие познавательных УУД обучающихся 5-х классов при обучении решению текстовых задач по математике

Уникальность: от 40%
Доступность: сразу
1650 ₽
Готовая работа

Тестовые задания в теории функций комплексного переменного

Уникальность: от 40%
Доступность: сразу
2500 ₽
Готовая работа

Для МЕХМАТА. Пространства двузначных функций с топологией поточечной сходимости. УНИКАЛЬНОЕ НАУЧНОЕ ИССЛЕДОВАНИЕ.

Уникальность: от 40%
Доступность: сразу
7500 ₽
Готовая работа

Формирование эвристик в процессе обучения младших школьников решению текстовых задач».

Уникальность: от 40%
Доступность: сразу
4000 ₽
Готовая работа

Первообразная в школьном курсе математики: теория, методика преподавания, системы упражнений, контрольно-измерительные материалы

Уникальность: от 40%
Доступность: сразу
2800 ₽
Готовая работа

Геометрия треугольника

Уникальность: от 40%
Доступность: сразу
2000 ₽
Готовая работа

Методы технического анализа на валютном рынке

Уникальность: от 40%
Доступность: сразу
2000 ₽