Автор24

Информация о работе

Подробнее о работе

Страница работы

ВЗФЭИ-теория вероятности и математическая статистика

  • 10 страниц
  • 2012 год
  • 597 просмотров
  • 0 покупок
Автор работы

user57433

Делаю работы по Высшей математике уже на протяжение более 10 лет.

250 ₽

Работа будет доступна в твоём личном кабинете после покупки

Гарантия сервиса Автор24

Уникальность не ниже 50%

Фрагменты работ

Задача № 1. Из 300 предприятий региона по схеме собственно-случайной бесповторной выборки было отобрано 100 предприятий, Распределение их по размеру годовой прибыли характеризуется следующими данными:


Годовая прибыль,
млн. руб. 10-20 20-30 30-40 40-50 50-60 Свыше 60 Итого
Число предприятий 4 12 36 24 16 8 100
Найти: а) границы, в которых с вероятностью 0,9901 заключена средняя годовая прибыль всех предприятий; б) вероятность того» что доля всех предприятий, годовая прибыль которых менее 40 млн руб., отличается от доли таких предприятий в выборке не более чем на 0,05 (по абсолютной величине); в) объем бесповторной выборки, при котором те же границы для средней годовой прибыли предприятий (см. п. а)) можно гарантировать с вероятностью 0,95.
Задача № 2. Поданным задачи 1, используя -критерий Пирсона, при уровне значимости а = 0,05 проверить гипотезу о том, что случайная величина X— средняя годовая прибыль распределена по нормальному закону. Построить на одном чертеже гистограмму распределения и соответствующую нормальную кривую.
Задача № 3. Распределение 50 предприятий по двум признакам — вы¬пуску продукции X(млн. руб.) и размеру прибыли Y (млн руб.) — представлено в таблице;


12,0-13.5 13,5-15,0 15,0-16.5 16,5-18.0 18,0-19,5 Итого
40-50 1 1 1 3
50-60 1 3 2 6
60-70 4 1 11 16
70-80 6 9 15
80-90 2 2 1 5
90-100 2 3 5
Итого 2 8 5 21 13 50
Необходимо:
1) Вычислить групповые средние X и Y, и построить эмпирические линии регрессии.
2) Предполагая, что между переменными Х и Y существует линейная корреляционная зависимость: а) найти уравнения прямых регрессии, построить их графики на одном чертеже с эмпирическими линиями регрессии и дать экономическую интерпретацию полученных уравнений; 6) вычислить коэффициент корреляции, на уровне значимости а = 0,05 оценить его значимость и сделать вывод о тесноте и направлении связи между переменными X и Y; в) используя соответствующее уравнение регрессии, оценить средний размер прибыли при выпуске продукции в 63 млн. руб.

Задача № 1. Из 300 предприятий региона по схеме собственно-случайной бесповторной выборки было отобрано 100 предприятий, Распределение их по размеру годовой прибыли характеризуется следующими данными:


Годовая прибыль,
млн. руб. 10-20 20-30 30-40 40-50 50-60 Свыше 60 Итого
Число предприятий 4 12 36 24 16 8 100
Найти: а) границы, в которых с вероятностью 0,9901 заключена средняя годовая прибыль всех предприятий; б) вероятность того» что доля всех предприятий, годовая прибыль которых менее 40 млн руб., отличается от доли таких предприятий в выборке не более чем на 0,05 (по абсолютной величине); в) объем бесповторной выборки, при котором те же границы для средней годовой прибыли предприятий (см. п. а)) можно гарантировать с вероятностью 0,95.
Задача № 2. Поданным задачи 1, используя -критерий Пирсона, при уровне значимости а = 0,05 проверить гипотезу о том, что случайная величина X— средняя годовая прибыль распределена по нормальному закону. Построить на одном чертеже гистограмму распределения и соответствующую нормальную кривую.
Задача № 3. Распределение 50 предприятий по двум признакам — вы¬пуску продукции X(млн. руб.) и размеру прибыли Y (млн руб.) — представлено в таблице;


12,0-13.5 13,5-15,0 15,0-16.5 16,5-18.0 18,0-19,5 Итого
40-50 1 1 1 3
50-60 1 3 2 6
60-70 4 1 11 16
70-80 6 9 15
80-90 2 2 1 5
90-100 2 3 5
Итого 2 8 5 21 13 50
Необходимо:
1) Вычислить групповые средние X и Y, и построить эмпирические линии регрессии.
2) Предполагая, что между переменными Х и Y существует линейная корреляционная зависимость: а) найти уравнения прямых регрессии, построить их графики на одном чертеже с эмпирическими линиями регрессии и дать экономическую интерпретацию полученных уравнений; 6) вычислить коэффициент корреляции, на уровне значимости а = 0,05 оценить его значимость и сделать вывод о тесноте и направлении связи между переменными X и Y; в) используя соответствующее уравнение регрессии, оценить средний размер прибыли при выпуске продукции в 63 млн. руб.

ВЗФЭИ-теория вероятности и математическая статистика, контрольная рбота № 4, 2 вариант

Кремер Н.Ш. Теория вероятностей и математическая статистика. – Москва, ЮНИТИ, 2004г.

Форма заказа новой работы

Не подошла эта работа?

Закажи новую работу, сделанную по твоим требованиям

Оставляя свои контактные данные и нажимая «Заказать Контрольную работу», я соглашаюсь пройти процедуру регистрации на Платформе, принимаю условия Пользовательского соглашения и Политики конфиденциальности в целях заключения соглашения.

Фрагменты работ

Задача № 1. Из 300 предприятий региона по схеме собственно-случайной бесповторной выборки было отобрано 100 предприятий, Распределение их по размеру годовой прибыли характеризуется следующими данными:


Годовая прибыль,
млн. руб. 10-20 20-30 30-40 40-50 50-60 Свыше 60 Итого
Число предприятий 4 12 36 24 16 8 100
Найти: а) границы, в которых с вероятностью 0,9901 заключена средняя годовая прибыль всех предприятий; б) вероятность того» что доля всех предприятий, годовая прибыль которых менее 40 млн руб., отличается от доли таких предприятий в выборке не более чем на 0,05 (по абсолютной величине); в) объем бесповторной выборки, при котором те же границы для средней годовой прибыли предприятий (см. п. а)) можно гарантировать с вероятностью 0,95.
Задача № 2. Поданным задачи 1, используя -критерий Пирсона, при уровне значимости а = 0,05 проверить гипотезу о том, что случайная величина X— средняя годовая прибыль распределена по нормальному закону. Построить на одном чертеже гистограмму распределения и соответствующую нормальную кривую.
Задача № 3. Распределение 50 предприятий по двум признакам — вы¬пуску продукции X(млн. руб.) и размеру прибыли Y (млн руб.) — представлено в таблице;


12,0-13.5 13,5-15,0 15,0-16.5 16,5-18.0 18,0-19,5 Итого
40-50 1 1 1 3
50-60 1 3 2 6
60-70 4 1 11 16
70-80 6 9 15
80-90 2 2 1 5
90-100 2 3 5
Итого 2 8 5 21 13 50
Необходимо:
1) Вычислить групповые средние X и Y, и построить эмпирические линии регрессии.
2) Предполагая, что между переменными Х и Y существует линейная корреляционная зависимость: а) найти уравнения прямых регрессии, построить их графики на одном чертеже с эмпирическими линиями регрессии и дать экономическую интерпретацию полученных уравнений; 6) вычислить коэффициент корреляции, на уровне значимости а = 0,05 оценить его значимость и сделать вывод о тесноте и направлении связи между переменными X и Y; в) используя соответствующее уравнение регрессии, оценить средний размер прибыли при выпуске продукции в 63 млн. руб.

Задача № 1. Из 300 предприятий региона по схеме собственно-случайной бесповторной выборки было отобрано 100 предприятий, Распределение их по размеру годовой прибыли характеризуется следующими данными:


Годовая прибыль,
млн. руб. 10-20 20-30 30-40 40-50 50-60 Свыше 60 Итого
Число предприятий 4 12 36 24 16 8 100
Найти: а) границы, в которых с вероятностью 0,9901 заключена средняя годовая прибыль всех предприятий; б) вероятность того» что доля всех предприятий, годовая прибыль которых менее 40 млн руб., отличается от доли таких предприятий в выборке не более чем на 0,05 (по абсолютной величине); в) объем бесповторной выборки, при котором те же границы для средней годовой прибыли предприятий (см. п. а)) можно гарантировать с вероятностью 0,95.
Задача № 2. Поданным задачи 1, используя -критерий Пирсона, при уровне значимости а = 0,05 проверить гипотезу о том, что случайная величина X— средняя годовая прибыль распределена по нормальному закону. Построить на одном чертеже гистограмму распределения и соответствующую нормальную кривую.
Задача № 3. Распределение 50 предприятий по двум признакам — вы¬пуску продукции X(млн. руб.) и размеру прибыли Y (млн руб.) — представлено в таблице;


12,0-13.5 13,5-15,0 15,0-16.5 16,5-18.0 18,0-19,5 Итого
40-50 1 1 1 3
50-60 1 3 2 6
60-70 4 1 11 16
70-80 6 9 15
80-90 2 2 1 5
90-100 2 3 5
Итого 2 8 5 21 13 50
Необходимо:
1) Вычислить групповые средние X и Y, и построить эмпирические линии регрессии.
2) Предполагая, что между переменными Х и Y существует линейная корреляционная зависимость: а) найти уравнения прямых регрессии, построить их графики на одном чертеже с эмпирическими линиями регрессии и дать экономическую интерпретацию полученных уравнений; 6) вычислить коэффициент корреляции, на уровне значимости а = 0,05 оценить его значимость и сделать вывод о тесноте и направлении связи между переменными X и Y; в) используя соответствующее уравнение регрессии, оценить средний размер прибыли при выпуске продукции в 63 млн. руб.

ВЗФЭИ-теория вероятности и математическая статистика, контрольная рбота № 4, 2 вариант

Кремер Н.Ш. Теория вероятностей и математическая статистика. – Москва, ЮНИТИ, 2004г.

Купить эту работу

ВЗФЭИ-теория вероятности и математическая статистика

250 ₽

или заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 200 ₽

Гарантии Автор24

Изображения работ

Страница работы
Страница работы
Страница работы

Понравилась эта работа?

или

1 апреля 2014 заказчик разместил работу

Выбранный эксперт:

Автор работы
user57433
5
Делаю работы по Высшей математике уже на протяжение более 10 лет.
Купить эту работу vs Заказать новую
0 раз Куплено Выполняется индивидуально
Не менее 40%
Исполнитель, загружая работу в «Банк готовых работ» подтверждает, что уровень оригинальности работы составляет не менее 40%
Уникальность Выполняется индивидуально
Сразу в личном кабинете Доступность Срок 1—5 дней
250 ₽ Цена от 200 ₽

5 Похожих работ

Контрольная работа

кр№6 УИПА

Уникальность: от 40%
Доступность: сразу
400 ₽
Контрольная работа

ТеорверКР№7вар7УИПА

Уникальность: от 40%
Доступность: сразу
400 ₽
Контрольная работа

ТВ кр№7вар6 УИПА

Уникальность: от 40%
Доступность: сразу
400 ₽
Контрольная работа

35 задач по ТВиМС для заочного

Уникальность: от 40%
Доступность: сразу
400 ₽
Контрольная работа

Теория вероятности и математическая статистика

Уникальность: от 40%
Доступность: сразу
300 ₽

Отзывы студентов

Отзыв Филипп Минаев об авторе user57433 2016-01-28
Контрольная работа

спасибо

Общая оценка 5
Отзыв MariyaS об авторе user57433 2015-03-10
Контрольная работа

Спасибо огромное за работу!

Общая оценка 5
Отзыв style2off1988 об авторе user57433 2015-02-16
Контрольная работа

Все отлично. Буду заказывать еще. Очень понравилось, как работает автор, быстро и качественно.

Общая оценка 5
Отзыв Кутырев Сергей об авторе user57433 2018-04-17
Контрольная работа

Спасибо, большое! Выполнено безупречно. Преподаватель после такой контрольной, поставил автоматом зачет по другому своему предмету.

Общая оценка 5

другие учебные работы по предмету

Готовая работа

Общая характеристика деятельности В.В. Бианки в области теории и практики детской литературы

Уникальность: от 40%
Доступность: сразу
200 ₽
Готовая работа

Задачи по теории вероятностей и мат.статистике

Уникальность: от 40%
Доступность: сразу
500 ₽
Готовая работа

Математическая обработка гидрографических измерений

Уникальность: от 40%
Доступность: сразу
1000 ₽
Готовая работа

"Измерение двумерной системы.Оценка параметров распределения некоррелированных величин."

Уникальность: от 40%
Доступность: сразу
400 ₽
Готовая работа

КУРСОВАЯ РАБОТА по учебной дисциплине " Теория вероятностей и математическая статистика "

Уникальность: от 40%
Доступность: сразу
750 ₽
Готовая работа

Выбор наиболее эффективных методов

Уникальность: от 40%
Доступность: сразу
400 ₽
Готовая работа

В результате измерений некоторой физической величины Х получена выборка. По выборке определить закон распределения случайной величины Х.

Уникальность: от 40%
Доступность: сразу
450 ₽
Готовая работа

"Случайные" (псевдослучайные) числа

Уникальность: от 40%
Доступность: сразу
300 ₽
Готовая работа

КУРСОВАЯ РАБОТА по учебной дисциплине " Теория вероятностей и математическая статистика "

Уникальность: от 40%
Доступность: сразу
750 ₽
Готовая работа

Теория вероятностей и математическая статистика Вариант № 2

Уникальность: от 40%
Доступность: сразу
750 ₽
Готовая работа

Комплект заданий для контрольной работы по дисциплине «Математика» Вариант 20

Уникальность: от 40%
Доступность: сразу
150 ₽
Готовая работа

Модели управления запасами

Уникальность: от 40%
Доступность: сразу
660 ₽