Автор24

Информация о работе

Подробнее о работе

Страница работы

теория вероятностей 11 задач

  • 11 страниц
  • 2017 год
  • 249 просмотров
  • 6 покупок
Автор работы

МарьянаИвановна

200 ₽

Работа будет доступна в твоём личном кабинете после покупки

Гарантия сервиса Автор24

Уникальность не ниже 50%

Фрагменты работ

Найти вероятность того, что среди них окажутся 3 детали первого сорта.
2. В урне 5 белых и 4 красных шара, одинаковых на ощупь. Наудачу вынимаются 3 шара. Найти вероятность того, что среди извлеченных шаров будет не менее двух красных.
3. Найти вероятность безотказной работы электрической цепи, coстоящей из независимо работающих элементов, если вероятность работы каждого элемента равна 0,98
4. Комплект состоит из 16 деталей завода № 1, 12 деталей завода № 2 и 22 деталей завода № 3. Вероятности того, что деталь низкого качества соответственно равны 0,08 для первого завода, 0,06 - для второго завода и 0,1 для третьего. Найти вероятность того, что наудачу вынутая деталь из комплекта будет высокого качества.
5. Событие В появится в том случае, если событие А наступит не менее двух раз. Найти вероятность появления события В, если произведено шесть независимых испытаний, в каждом из которых вероятность появления события А равна 0,4.
6. Автобаза обслуживает 140 магазинов. От каждого из них заявка на автомашины на следующий день может поступить с вероятностью 0,7. Найти вероятность того, что поступит не менее 110 и не более 120 заявок; ровно 110 заявок.
7. В команде 9 спортсменов, из них 4 - первого разряда и 5 - второго. Наудачу отобраны 3 спортсмена. Найти ряд распределения дискретной случайной величины Х - числа спортсменов второго разряда среди отобранных.
среди тобранных спортсменов второго разряда
8. Дискретная случайная величина X задана рядом распределения
Х 0,8 1,4 2
Р 0,3 0,5 0,2
НАЙТИ
М(2Х^2+1,2Х)
D(2Х^2+1,2Х)

9. Коммутатор учреждения обслуживает 200 абонентов. Вероятность того, что в течение одной минуты абонент позвонит на коммутатор, равна 0,01. Найти вероятность того, что в течение минуты позвонят более двух абонентов.
10. Случайная величина Х задана плотностью распределения f(x):
0, x ≤ 0
A•sin(2x), 0 < x < π/2
0, x ≥ π/2
11. На станке изготавливается деталь. Ее длина Х - случайная величина, распределенная по нормальному закону с параметрами a = 23,0 см, σ = 1,6 см. Найти вероятность того, что длина детали будет заключена между 22 и 24,2 см. Какое отклонение длины детали от "a" можно гарантировать с вероятностью 0,92; 0,98? В каких пределах, симметричных относительно "a", будут лежать практически все размеры деталей?

Найти вероятность того, что среди них окажутся 3 детали первого сорта.
2. В урне 5 белых и 4 красных шара, одинаковых на ощупь. Наудачу вынимаются 3 шара. Найти вероятность того, что среди извлеченных шаров будет не менее двух красных.
3. Найти вероятность безотказной работы электрической цепи, coстоящей из независимо работающих элементов, если вероятность работы каждого элемента равна 0,98
4. Комплект состоит из 16 деталей завода № 1, 12 деталей завода № 2 и 22 деталей завода № 3. Вероятности того, что деталь низкого качества соответственно равны 0,08 для первого завода, 0,06 - для второго завода и 0,1 для третьего. Найти вероятность того, что наудачу вынутая деталь из комплекта будет высокого качества.
5. Событие В появится в том случае, если событие А наступит не менее двух раз. Найти вероятность появления события В, если произведено шесть независимых испытаний, в каждом из которых вероятность появления события А равна 0,4.
6. Автобаза обслуживает 140 магазинов. От каждого из них заявка на автомашины на следующий день может поступить с вероятностью 0,7. Найти вероятность того, что поступит не менее 110 и не более 120 заявок; ровно 110 заявок.
7. В команде 9 спортсменов, из них 4 - первого разряда и 5 - второго. Наудачу отобраны 3 спортсмена. Найти ряд распределения дискретной случайной величины Х - числа спортсменов второго разряда среди отобранных.
среди тобранных спортсменов второго разряда
8. Дискретная случайная величина X задана рядом распределения
Х 0,8 1,4 2
Р 0,3 0,5 0,2
НАЙТИ
М(2Х^2+1,2Х)
D(2Х^2+1,2Х)

9. Коммутатор учреждения обслуживает 200 абонентов. Вероятность того, что в течение одной минуты абонент позвонит на коммутатор, равна 0,01. Найти вероятность того, что в течение минуты позвонят более двух абонентов.
10. Случайная величина Х задана плотностью распределения f(x):
0, x ≤ 0
A•sin(2x), 0 < x < π/2
0, x ≥ π/2
11. На станке изготавливается деталь. Ее длина Х - случайная величина, распределенная по нормальному закону с параметрами a = 23,0 см, σ = 1,6 см. Найти вероятность того, что длина детали будет заключена между 22 и 24,2 см. Какое отклонение длины детали от "a" можно гарантировать с вероятностью 0,92; 0,98? В каких пределах, симметричных относительно "a", будут лежать практически все размеры деталей?

подробное решение 11 задач
оформление - ворд

Найти вероятность того, что среди них окажутся 3 детали первого сорта.
2. В урне 5 белых и 4 красных шара, одинаковых на ощупь. Наудачу вынимаются 3 шара. Найти вероятность того, что среди извлеченных шаров будет не менее двух красных.
3. Найти вероятность безотказной работы электрической цепи, coстоящей из независимо работающих элементов, если вероятность работы каждого элемента равна 0,98
4. Комплект состоит из 16 деталей завода № 1, 12 деталей завода № 2 и 22 деталей завода № 3. Вероятности того, что деталь низкого качества соответственно равны 0,08 для первого завода, 0,06 - для второго завода и 0,1 для третьего. Найти вероятность того, что наудачу вынутая деталь из комплекта будет высокого качества.
5. Событие В появится в том случае, если событие А наступит не менее двух раз. Найти вероятность появления события В, если произведено шесть независимых испытаний, в каждом из которых вероятность появления события А равна 0,4.
6. Автобаза обслуживает 140 магазинов. От каждого из них заявка на автомашины на следующий день может поступить с вероятностью 0,7. Найти вероятность того, что поступит не менее 110 и не более 120 заявок; ровно 110 заявок.
7. В команде 9 спортсменов, из них 4 - первого разряда и 5 - второго. Наудачу отобраны 3 спортсмена. Найти ряд распределения дискретной случайной величины Х - числа спортсменов второго разряда среди отобранных.
среди тобранных спортсменов второго разряда
8. Дискретная случайная величина X задана рядом распределения
Х 0,8 1,4 2
Р 0,3 0,5 0,2
НАЙТИ
М(2Х^2+1,2Х)
D(2Х^2+1,2Х)

9. Коммутатор учреждения обслуживает 200 абонентов. Вероятность того, что в течение одной минуты абонент позвонит на коммутатор, равна 0,01. Найти вероятность того, что в течение минуты позвонят более двух абонентов.
10. Случайная величина Х задана плотностью распределения f(x):
0, x ≤ 0
A•sin(2x), 0 < x < π/2
0, x ≥ π/2
11. На станке изготавливается деталь. Ее длина Х - случайная величина, распределенная по нормальному закону с параметрами a = 23,0 см, σ = 1,6 см. Найти вероятность того, что длина детали будет заключена между 22 и 24,2 см. Какое отклонение длины детали от "a" можно гарантировать с вероятностью 0,92; 0,98? В каких пределах, симметричных относительно "a", будут лежать практически все размеры деталей?

Форма заказа новой работы

Не подошла эта работа?

Закажи новую работу, сделанную по твоим требованиям

Оставляя свои контактные данные и нажимая «Заказать Контрольную работу», я соглашаюсь пройти процедуру регистрации на Платформе, принимаю условия Пользовательского соглашения и Политики конфиденциальности в целях заключения соглашения.

Фрагменты работ

Найти вероятность того, что среди них окажутся 3 детали первого сорта.
2. В урне 5 белых и 4 красных шара, одинаковых на ощупь. Наудачу вынимаются 3 шара. Найти вероятность того, что среди извлеченных шаров будет не менее двух красных.
3. Найти вероятность безотказной работы электрической цепи, coстоящей из независимо работающих элементов, если вероятность работы каждого элемента равна 0,98
4. Комплект состоит из 16 деталей завода № 1, 12 деталей завода № 2 и 22 деталей завода № 3. Вероятности того, что деталь низкого качества соответственно равны 0,08 для первого завода, 0,06 - для второго завода и 0,1 для третьего. Найти вероятность того, что наудачу вынутая деталь из комплекта будет высокого качества.
5. Событие В появится в том случае, если событие А наступит не менее двух раз. Найти вероятность появления события В, если произведено шесть независимых испытаний, в каждом из которых вероятность появления события А равна 0,4.
6. Автобаза обслуживает 140 магазинов. От каждого из них заявка на автомашины на следующий день может поступить с вероятностью 0,7. Найти вероятность того, что поступит не менее 110 и не более 120 заявок; ровно 110 заявок.
7. В команде 9 спортсменов, из них 4 - первого разряда и 5 - второго. Наудачу отобраны 3 спортсмена. Найти ряд распределения дискретной случайной величины Х - числа спортсменов второго разряда среди отобранных.
среди тобранных спортсменов второго разряда
8. Дискретная случайная величина X задана рядом распределения
Х 0,8 1,4 2
Р 0,3 0,5 0,2
НАЙТИ
М(2Х^2+1,2Х)
D(2Х^2+1,2Х)

9. Коммутатор учреждения обслуживает 200 абонентов. Вероятность того, что в течение одной минуты абонент позвонит на коммутатор, равна 0,01. Найти вероятность того, что в течение минуты позвонят более двух абонентов.
10. Случайная величина Х задана плотностью распределения f(x):
0, x ≤ 0
A•sin(2x), 0 < x < π/2
0, x ≥ π/2
11. На станке изготавливается деталь. Ее длина Х - случайная величина, распределенная по нормальному закону с параметрами a = 23,0 см, σ = 1,6 см. Найти вероятность того, что длина детали будет заключена между 22 и 24,2 см. Какое отклонение длины детали от "a" можно гарантировать с вероятностью 0,92; 0,98? В каких пределах, симметричных относительно "a", будут лежать практически все размеры деталей?

Найти вероятность того, что среди них окажутся 3 детали первого сорта.
2. В урне 5 белых и 4 красных шара, одинаковых на ощупь. Наудачу вынимаются 3 шара. Найти вероятность того, что среди извлеченных шаров будет не менее двух красных.
3. Найти вероятность безотказной работы электрической цепи, coстоящей из независимо работающих элементов, если вероятность работы каждого элемента равна 0,98
4. Комплект состоит из 16 деталей завода № 1, 12 деталей завода № 2 и 22 деталей завода № 3. Вероятности того, что деталь низкого качества соответственно равны 0,08 для первого завода, 0,06 - для второго завода и 0,1 для третьего. Найти вероятность того, что наудачу вынутая деталь из комплекта будет высокого качества.
5. Событие В появится в том случае, если событие А наступит не менее двух раз. Найти вероятность появления события В, если произведено шесть независимых испытаний, в каждом из которых вероятность появления события А равна 0,4.
6. Автобаза обслуживает 140 магазинов. От каждого из них заявка на автомашины на следующий день может поступить с вероятностью 0,7. Найти вероятность того, что поступит не менее 110 и не более 120 заявок; ровно 110 заявок.
7. В команде 9 спортсменов, из них 4 - первого разряда и 5 - второго. Наудачу отобраны 3 спортсмена. Найти ряд распределения дискретной случайной величины Х - числа спортсменов второго разряда среди отобранных.
среди тобранных спортсменов второго разряда
8. Дискретная случайная величина X задана рядом распределения
Х 0,8 1,4 2
Р 0,3 0,5 0,2
НАЙТИ
М(2Х^2+1,2Х)
D(2Х^2+1,2Х)

9. Коммутатор учреждения обслуживает 200 абонентов. Вероятность того, что в течение одной минуты абонент позвонит на коммутатор, равна 0,01. Найти вероятность того, что в течение минуты позвонят более двух абонентов.
10. Случайная величина Х задана плотностью распределения f(x):
0, x ≤ 0
A•sin(2x), 0 < x < π/2
0, x ≥ π/2
11. На станке изготавливается деталь. Ее длина Х - случайная величина, распределенная по нормальному закону с параметрами a = 23,0 см, σ = 1,6 см. Найти вероятность того, что длина детали будет заключена между 22 и 24,2 см. Какое отклонение длины детали от "a" можно гарантировать с вероятностью 0,92; 0,98? В каких пределах, симметричных относительно "a", будут лежать практически все размеры деталей?

подробное решение 11 задач
оформление - ворд

Найти вероятность того, что среди них окажутся 3 детали первого сорта.
2. В урне 5 белых и 4 красных шара, одинаковых на ощупь. Наудачу вынимаются 3 шара. Найти вероятность того, что среди извлеченных шаров будет не менее двух красных.
3. Найти вероятность безотказной работы электрической цепи, coстоящей из независимо работающих элементов, если вероятность работы каждого элемента равна 0,98
4. Комплект состоит из 16 деталей завода № 1, 12 деталей завода № 2 и 22 деталей завода № 3. Вероятности того, что деталь низкого качества соответственно равны 0,08 для первого завода, 0,06 - для второго завода и 0,1 для третьего. Найти вероятность того, что наудачу вынутая деталь из комплекта будет высокого качества.
5. Событие В появится в том случае, если событие А наступит не менее двух раз. Найти вероятность появления события В, если произведено шесть независимых испытаний, в каждом из которых вероятность появления события А равна 0,4.
6. Автобаза обслуживает 140 магазинов. От каждого из них заявка на автомашины на следующий день может поступить с вероятностью 0,7. Найти вероятность того, что поступит не менее 110 и не более 120 заявок; ровно 110 заявок.
7. В команде 9 спортсменов, из них 4 - первого разряда и 5 - второго. Наудачу отобраны 3 спортсмена. Найти ряд распределения дискретной случайной величины Х - числа спортсменов второго разряда среди отобранных.
среди тобранных спортсменов второго разряда
8. Дискретная случайная величина X задана рядом распределения
Х 0,8 1,4 2
Р 0,3 0,5 0,2
НАЙТИ
М(2Х^2+1,2Х)
D(2Х^2+1,2Х)

9. Коммутатор учреждения обслуживает 200 абонентов. Вероятность того, что в течение одной минуты абонент позвонит на коммутатор, равна 0,01. Найти вероятность того, что в течение минуты позвонят более двух абонентов.
10. Случайная величина Х задана плотностью распределения f(x):
0, x ≤ 0
A•sin(2x), 0 < x < π/2
0, x ≥ π/2
11. На станке изготавливается деталь. Ее длина Х - случайная величина, распределенная по нормальному закону с параметрами a = 23,0 см, σ = 1,6 см. Найти вероятность того, что длина детали будет заключена между 22 и 24,2 см. Какое отклонение длины детали от "a" можно гарантировать с вероятностью 0,92; 0,98? В каких пределах, симметричных относительно "a", будут лежать практически все размеры деталей?

Купить эту работу

теория вероятностей 11 задач

200 ₽

или заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 200 ₽

Гарантии Автор24

Изображения работ

Страница работы
Страница работы
Страница работы

Понравилась эта работа?

или

7 ноября 2017 заказчик разместил работу

Выбранный эксперт:

Автор работы
МарьянаИвановна
4
Купить эту работу vs Заказать новую
6 раз Куплено Выполняется индивидуально
Не менее 40%
Исполнитель, загружая работу в «Банк готовых работ» подтверждает, что уровень оригинальности работы составляет не менее 40%
Уникальность Выполняется индивидуально
Сразу в личном кабинете Доступность Срок 1—5 дней
200 ₽ Цена от 200 ₽

5 Похожих работ

Контрольная работа

кр№6 УИПА

Уникальность: от 40%
Доступность: сразу
400 ₽
Контрольная работа

ТеорверКР№7вар7УИПА

Уникальность: от 40%
Доступность: сразу
400 ₽
Контрольная работа

ТВ кр№7вар6 УИПА

Уникальность: от 40%
Доступность: сразу
400 ₽
Контрольная работа

35 задач по ТВиМС для заочного

Уникальность: от 40%
Доступность: сразу
400 ₽
Контрольная работа

Теория вероятности и математическая статистика

Уникальность: от 40%
Доступность: сразу
300 ₽

Отзывы студентов

Отзыв Филипп Минаев об авторе МарьянаИвановна 2016-01-28
Контрольная работа

спасибо

Общая оценка 5
Отзыв MariyaS об авторе МарьянаИвановна 2015-03-10
Контрольная работа

Спасибо огромное за работу!

Общая оценка 5
Отзыв style2off1988 об авторе МарьянаИвановна 2015-02-16
Контрольная работа

Все отлично. Буду заказывать еще. Очень понравилось, как работает автор, быстро и качественно.

Общая оценка 5
Отзыв Кутырев Сергей об авторе МарьянаИвановна 2018-04-17
Контрольная работа

Спасибо, большое! Выполнено безупречно. Преподаватель после такой контрольной, поставил автоматом зачет по другому своему предмету.

Общая оценка 5

другие учебные работы по предмету

Готовая работа

Общая характеристика деятельности В.В. Бианки в области теории и практики детской литературы

Уникальность: от 40%
Доступность: сразу
200 ₽
Готовая работа

Задачи по теории вероятностей и мат.статистике

Уникальность: от 40%
Доступность: сразу
500 ₽
Готовая работа

Математическая обработка гидрографических измерений

Уникальность: от 40%
Доступность: сразу
1000 ₽
Готовая работа

"Измерение двумерной системы.Оценка параметров распределения некоррелированных величин."

Уникальность: от 40%
Доступность: сразу
400 ₽
Готовая работа

КУРСОВАЯ РАБОТА по учебной дисциплине " Теория вероятностей и математическая статистика "

Уникальность: от 40%
Доступность: сразу
750 ₽
Готовая работа

Выбор наиболее эффективных методов

Уникальность: от 40%
Доступность: сразу
400 ₽
Готовая работа

В результате измерений некоторой физической величины Х получена выборка. По выборке определить закон распределения случайной величины Х.

Уникальность: от 40%
Доступность: сразу
450 ₽
Готовая работа

"Случайные" (псевдослучайные) числа

Уникальность: от 40%
Доступность: сразу
300 ₽
Готовая работа

КУРСОВАЯ РАБОТА по учебной дисциплине " Теория вероятностей и математическая статистика "

Уникальность: от 40%
Доступность: сразу
750 ₽
Готовая работа

Теория вероятностей и математическая статистика Вариант № 2

Уникальность: от 40%
Доступность: сразу
750 ₽
Готовая работа

Комплект заданий для контрольной работы по дисциплине «Математика» Вариант 20

Уникальность: от 40%
Доступность: сразу
150 ₽
Готовая работа

Модели управления запасами

Уникальность: от 40%
Доступность: сразу
660 ₽