Автор24

Информация о работе

Подробнее о работе

Страница работы

Тест по теории вероятностей, 25 задач

  • 10 страниц
  • 2017 год
  • 395 просмотров
  • 0 покупок
Автор работы

Valfreyja6

Преподаватель вуза с 20-ти летним стажем и огромным опытом выполнения студенческих работ

300 ₽

Работа будет доступна в твоём личном кабинете после покупки

Гарантия сервиса Автор24

Уникальность не ниже 50%

Фрагменты работ

1.В библиотеке на книжной полке расставлены 10 книг различных авторов. 3 студента могут выбрать по одной книге. Сколько всевозможных вариантов выбора книг можно осуществить?
2. Паспорт гражданина Российской Федерации состоит из серии и номера. Серия представляет собой 4 цифры, а номер – 6 цифр, расположенных в произвольном порядке. Определите возможное количество различных паспортов, которое может быть выдано гражданам Российской Федерации.
3.На экзамене по теории вероятностей было 34 билета. Студент дважды извлекает по одному билету из предложенных билетов (не возвращая их). Студент подготовился лишь по 30-ти билетам? Какова вероятность того, что он сдаст экзамен, выбрав первый раз «неудачный билет»?
4.В магазине имеется 15 видов различных коробок с конфетами. Представитель фирмы покупает 10 коробок, выбирая каждую случайным образом. Сколько существует способов выбрать случайно 10 самых дорогих коробок конфет, если все коробки с конфетами должны быть разными?
5.Собрание сочинений А. С. Пушкина издано в 6 томах. Книги расставляют на полке в случайном порядке. Сколько существует способов расставить эти тома?
6.Собрание сочинений А. С. Пушкина издано в 6 томах. Книги расставляют на полке в случайном порядке. Сколько способов гарантирует, что первые 3 тома будут стоять по порядку возрастания номеров?
7.Каждая буква слова «статистика» написана на разных карточках. Сколькими различными способами можно переставить эти буквы?
8.В киоске продавец музыкальных дисков предлагает организатору дискотеки 9 различных дисков. Однако сумма, которой располагает диск-жокей, позволяет купить ему только 3 различных диска. Сколько существует способов случайного выбора 3 различных дисков из 9?
9.Выделены крупные суммы на выполнение 5 объектов строительных работ. Сколько существует способов случайного распределения этих 5 объектов между 7 возможными фирмами-подрядчиками?
10.Пусть событие А состоит в том, что из 10 случайным образом купленных лотерейных билетов не более 2 окажутся выигрышными. Сколько элементарных событий благоприятствуют событию А, событию Ā?
11.Игрок из колоды карт без возвращения по 1 извлекает карты до тех пор, пока не появится туз. Определить вероятность того, что он сделает ровно 4 извлечения, если считать, что колода содержит 36 карт.
12.Инвестор предполагает, что в следующем периоде вероятность роста цены акций компании N будет составлять 0,7, а компании M – 0,4. Вероятность того, что цены поднимутся на те и другие акции, равна 0,28. Вычислите вероятность роста цен на акции или компании N, или компании M, или обеих компаний вместе.
13.Имеются 3 партии электроламп. Вероятности того, что лампа проработает заданное время, равны соответственно для этих партий 0,7; 0,8; 0,9. Какова вероятность того, что наудачу выбранная лампа проработает заданное время?
14.Экономист-аналитик условно подразделяет экономическую ситуацию в стране на «хорошую», «посредственную» и «плохую» и оценивает их вероятности для данного момента времени в 0,15; 0,75; и 0,1 соответственно. При «хорошей» ситуации индекс экономического состояния возрастает с вероятностью 0,6, при «посредственной» с вероятностью 0,3 и при «плохой» с вероятностью 0,1. Определите вероятность того, что экономическая ситуация в стране не «плохая», если известно, что индекс экономического состояния возрос.
15.Аналитик предполагает, что один из 600 вкладчиков утроит свой капитал в течение года, вложив его в новое производство. 1000 вкладчиков вложили деньги в производство. Определите вероятность того, что 3 вкладчика утроят свой капитал в течение года.
16.Аналитик предполагает, что один из 600 вкладчиков утроит свой капитал в течение года, вложив его в новое производство. 1000 вкладчиков вложили деньги в производство. Определите наивероятнейшее число вкладчиков, которые утроят капитал в течение года.
17.Для поступления в вуз необходимо успешно сдать вступительные экзамены. В среднем их успешно сдают лишь 65% абитуриентов. Предположим, что в приемную комиссию поступило 700 заявлений. Чему равна вероятность того, что хотя бы 500 поступающих успешно сдадут все экзамены?
18.Непрерывная случайная величина задана интегральной функцией (функцией распределения) F(x).
Найдите вероятность попадания случайной величины X в интервал (0,5; 1).
19.Непрерывная случайная величина задана интегральной функцией (функцией распределения) F(x).
Найдите дифференциальную функцию (функцию плотности вероятностей) f(x).
20.Непрерывная случайная величина задана интегральной функцией (функцией распределения) F(x).
Найдите математическое ожидание M(X), дисперсию D(X) и среднее квадратическое отклонение σ(X) случайной величины X.
21.Пусть прогноз относительно величины банковской процентной ставки в текущем году подчиняется нормальному закону со средним значением a = 9% и стандартным отклонением σ = 2,6%. Из группы аналитиков случайным образом отбирается один человек. Найдите вероятность того, что согласно прогнозу этого аналитика уровень процентной ставки превысит 11%.
22.Пусть прогноз относительно величины банковской процентной ставки в текущем году подчиняется нормальному закону со средним значением a = 9% и стандартным отклонением σ = 2,6%. Из группы аналитиков случайным образом отбирается один человек. Найдите вероятность того, что согласно прогнозу этого аналитика уровень процентной ставки окажется менее 14%.
23.Пусть прогноз относительно величины банковской процентной ставки в текущем году подчиняется нормальному закону со средним значением a = 9% и стандартным отклонением σ = 2,6%. Из группы аналитиков случайным образом отбирается один человек. Найдите вероятность того, что согласно прогнозу этого аналитика уровень процентной ставки будет в пределах от 12 до 15%.
24.В хозяйстве имеется 100 автомобилей. Вероятность безотказной работы каждого из них в течение определенного периода составляет 0,9. С помощью неравенства Чебышева оцените вероятность того, что отклонение числа безотказно работавших автомобилей за определенный период от его математического ожидания не превзойдет по модулю 5.
25. Случайная величина X задана интегральной функцией:
С помощью неравенства Чебышева определите вероятность того, что .

Из условия известны следующие вероятности: р1=0.7 – вероятность роста цены акций компании N и р2=0.4 – вероятность роста цены акций компании М. Найдем вероятности противоположных событий: q1=1-0.7=0.3 – вероятность того, что акции компании N не будут расти, q2=1-0.4=0.6 – вероятность того, что акции компании М не будут расти.
Событие А - рост цен на акции или компании N, или компании M, или обеих компаний вместе состоит в выполнении одного из трех событий:
- цены на акции компании N будут расти с вероятностью р1=0.7, а цены на акции компании М не будут расти с вероятностью q2=0.6;
- цены на акции компании М будут расти с вероятностью р2=0.4, а цены на акции компании N не будут расти с вероятностью q1=0.3;
- цены на акции компании N и компании М будут расти с вероятностью р=0.28.
Применяя теорему умножения вероятностей независимых событий и теорему сложения вероятностей несовместных событий, находим:

Тест состоит из 25 задач с подробными решениями. Оформлен а виде таблицы. Выполнен в Word, был проверен и зачтен без доработок.

отсутствует

Форма заказа новой работы

Не подошла эта работа?

Закажи новую работу, сделанную по твоим требованиям

Оставляя свои контактные данные и нажимая «Заказать Контрольную работу», я соглашаюсь пройти процедуру регистрации на Платформе, принимаю условия Пользовательского соглашения и Политики конфиденциальности в целях заключения соглашения.

Фрагменты работ

1.В библиотеке на книжной полке расставлены 10 книг различных авторов. 3 студента могут выбрать по одной книге. Сколько всевозможных вариантов выбора книг можно осуществить?
2. Паспорт гражданина Российской Федерации состоит из серии и номера. Серия представляет собой 4 цифры, а номер – 6 цифр, расположенных в произвольном порядке. Определите возможное количество различных паспортов, которое может быть выдано гражданам Российской Федерации.
3.На экзамене по теории вероятностей было 34 билета. Студент дважды извлекает по одному билету из предложенных билетов (не возвращая их). Студент подготовился лишь по 30-ти билетам? Какова вероятность того, что он сдаст экзамен, выбрав первый раз «неудачный билет»?
4.В магазине имеется 15 видов различных коробок с конфетами. Представитель фирмы покупает 10 коробок, выбирая каждую случайным образом. Сколько существует способов выбрать случайно 10 самых дорогих коробок конфет, если все коробки с конфетами должны быть разными?
5.Собрание сочинений А. С. Пушкина издано в 6 томах. Книги расставляют на полке в случайном порядке. Сколько существует способов расставить эти тома?
6.Собрание сочинений А. С. Пушкина издано в 6 томах. Книги расставляют на полке в случайном порядке. Сколько способов гарантирует, что первые 3 тома будут стоять по порядку возрастания номеров?
7.Каждая буква слова «статистика» написана на разных карточках. Сколькими различными способами можно переставить эти буквы?
8.В киоске продавец музыкальных дисков предлагает организатору дискотеки 9 различных дисков. Однако сумма, которой располагает диск-жокей, позволяет купить ему только 3 различных диска. Сколько существует способов случайного выбора 3 различных дисков из 9?
9.Выделены крупные суммы на выполнение 5 объектов строительных работ. Сколько существует способов случайного распределения этих 5 объектов между 7 возможными фирмами-подрядчиками?
10.Пусть событие А состоит в том, что из 10 случайным образом купленных лотерейных билетов не более 2 окажутся выигрышными. Сколько элементарных событий благоприятствуют событию А, событию Ā?
11.Игрок из колоды карт без возвращения по 1 извлекает карты до тех пор, пока не появится туз. Определить вероятность того, что он сделает ровно 4 извлечения, если считать, что колода содержит 36 карт.
12.Инвестор предполагает, что в следующем периоде вероятность роста цены акций компании N будет составлять 0,7, а компании M – 0,4. Вероятность того, что цены поднимутся на те и другие акции, равна 0,28. Вычислите вероятность роста цен на акции или компании N, или компании M, или обеих компаний вместе.
13.Имеются 3 партии электроламп. Вероятности того, что лампа проработает заданное время, равны соответственно для этих партий 0,7; 0,8; 0,9. Какова вероятность того, что наудачу выбранная лампа проработает заданное время?
14.Экономист-аналитик условно подразделяет экономическую ситуацию в стране на «хорошую», «посредственную» и «плохую» и оценивает их вероятности для данного момента времени в 0,15; 0,75; и 0,1 соответственно. При «хорошей» ситуации индекс экономического состояния возрастает с вероятностью 0,6, при «посредственной» с вероятностью 0,3 и при «плохой» с вероятностью 0,1. Определите вероятность того, что экономическая ситуация в стране не «плохая», если известно, что индекс экономического состояния возрос.
15.Аналитик предполагает, что один из 600 вкладчиков утроит свой капитал в течение года, вложив его в новое производство. 1000 вкладчиков вложили деньги в производство. Определите вероятность того, что 3 вкладчика утроят свой капитал в течение года.
16.Аналитик предполагает, что один из 600 вкладчиков утроит свой капитал в течение года, вложив его в новое производство. 1000 вкладчиков вложили деньги в производство. Определите наивероятнейшее число вкладчиков, которые утроят капитал в течение года.
17.Для поступления в вуз необходимо успешно сдать вступительные экзамены. В среднем их успешно сдают лишь 65% абитуриентов. Предположим, что в приемную комиссию поступило 700 заявлений. Чему равна вероятность того, что хотя бы 500 поступающих успешно сдадут все экзамены?
18.Непрерывная случайная величина задана интегральной функцией (функцией распределения) F(x).
Найдите вероятность попадания случайной величины X в интервал (0,5; 1).
19.Непрерывная случайная величина задана интегральной функцией (функцией распределения) F(x).
Найдите дифференциальную функцию (функцию плотности вероятностей) f(x).
20.Непрерывная случайная величина задана интегральной функцией (функцией распределения) F(x).
Найдите математическое ожидание M(X), дисперсию D(X) и среднее квадратическое отклонение σ(X) случайной величины X.
21.Пусть прогноз относительно величины банковской процентной ставки в текущем году подчиняется нормальному закону со средним значением a = 9% и стандартным отклонением σ = 2,6%. Из группы аналитиков случайным образом отбирается один человек. Найдите вероятность того, что согласно прогнозу этого аналитика уровень процентной ставки превысит 11%.
22.Пусть прогноз относительно величины банковской процентной ставки в текущем году подчиняется нормальному закону со средним значением a = 9% и стандартным отклонением σ = 2,6%. Из группы аналитиков случайным образом отбирается один человек. Найдите вероятность того, что согласно прогнозу этого аналитика уровень процентной ставки окажется менее 14%.
23.Пусть прогноз относительно величины банковской процентной ставки в текущем году подчиняется нормальному закону со средним значением a = 9% и стандартным отклонением σ = 2,6%. Из группы аналитиков случайным образом отбирается один человек. Найдите вероятность того, что согласно прогнозу этого аналитика уровень процентной ставки будет в пределах от 12 до 15%.
24.В хозяйстве имеется 100 автомобилей. Вероятность безотказной работы каждого из них в течение определенного периода составляет 0,9. С помощью неравенства Чебышева оцените вероятность того, что отклонение числа безотказно работавших автомобилей за определенный период от его математического ожидания не превзойдет по модулю 5.
25. Случайная величина X задана интегральной функцией:
С помощью неравенства Чебышева определите вероятность того, что .

Из условия известны следующие вероятности: р1=0.7 – вероятность роста цены акций компании N и р2=0.4 – вероятность роста цены акций компании М. Найдем вероятности противоположных событий: q1=1-0.7=0.3 – вероятность того, что акции компании N не будут расти, q2=1-0.4=0.6 – вероятность того, что акции компании М не будут расти.
Событие А - рост цен на акции или компании N, или компании M, или обеих компаний вместе состоит в выполнении одного из трех событий:
- цены на акции компании N будут расти с вероятностью р1=0.7, а цены на акции компании М не будут расти с вероятностью q2=0.6;
- цены на акции компании М будут расти с вероятностью р2=0.4, а цены на акции компании N не будут расти с вероятностью q1=0.3;
- цены на акции компании N и компании М будут расти с вероятностью р=0.28.
Применяя теорему умножения вероятностей независимых событий и теорему сложения вероятностей несовместных событий, находим:

Тест состоит из 25 задач с подробными решениями. Оформлен а виде таблицы. Выполнен в Word, был проверен и зачтен без доработок.

отсутствует

Купить эту работу

Тест по теории вероятностей, 25 задач

300 ₽

или заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 200 ₽

Гарантии Автор24

Изображения работ

Страница работы
Страница работы
Страница работы

Понравилась эта работа?

или

1 мая 2018 заказчик разместил работу

Выбранный эксперт:

Автор работы
Valfreyja6
4
Преподаватель вуза с 20-ти летним стажем и огромным опытом выполнения студенческих работ
Купить эту работу vs Заказать новую
0 раз Куплено Выполняется индивидуально
Не менее 40%
Исполнитель, загружая работу в «Банк готовых работ» подтверждает, что уровень оригинальности работы составляет не менее 40%
Уникальность Выполняется индивидуально
Сразу в личном кабинете Доступность Срок 1—5 дней
300 ₽ Цена от 200 ₽

5 Похожих работ

Контрольная работа

кр№6 УИПА

Уникальность: от 40%
Доступность: сразу
400 ₽
Контрольная работа

ТеорверКР№7вар7УИПА

Уникальность: от 40%
Доступность: сразу
400 ₽
Контрольная работа

ТВ кр№7вар6 УИПА

Уникальность: от 40%
Доступность: сразу
400 ₽
Контрольная работа

35 задач по ТВиМС для заочного

Уникальность: от 40%
Доступность: сразу
400 ₽
Контрольная работа

Теория вероятности и математическая статистика

Уникальность: от 40%
Доступность: сразу
300 ₽

Отзывы студентов

Отзыв Филипп Минаев об авторе Valfreyja6 2016-01-28
Контрольная работа

спасибо

Общая оценка 5
Отзыв MariyaS об авторе Valfreyja6 2015-03-10
Контрольная работа

Спасибо огромное за работу!

Общая оценка 5
Отзыв style2off1988 об авторе Valfreyja6 2015-02-16
Контрольная работа

Все отлично. Буду заказывать еще. Очень понравилось, как работает автор, быстро и качественно.

Общая оценка 5
Отзыв Кутырев Сергей об авторе Valfreyja6 2018-04-17
Контрольная работа

Спасибо, большое! Выполнено безупречно. Преподаватель после такой контрольной, поставил автоматом зачет по другому своему предмету.

Общая оценка 5

другие учебные работы по предмету

Готовая работа

Общая характеристика деятельности В.В. Бианки в области теории и практики детской литературы

Уникальность: от 40%
Доступность: сразу
200 ₽
Готовая работа

Задачи по теории вероятностей и мат.статистике

Уникальность: от 40%
Доступность: сразу
500 ₽
Готовая работа

Математическая обработка гидрографических измерений

Уникальность: от 40%
Доступность: сразу
1000 ₽
Готовая работа

"Измерение двумерной системы.Оценка параметров распределения некоррелированных величин."

Уникальность: от 40%
Доступность: сразу
400 ₽
Готовая работа

КУРСОВАЯ РАБОТА по учебной дисциплине " Теория вероятностей и математическая статистика "

Уникальность: от 40%
Доступность: сразу
750 ₽
Готовая работа

Выбор наиболее эффективных методов

Уникальность: от 40%
Доступность: сразу
400 ₽
Готовая работа

В результате измерений некоторой физической величины Х получена выборка. По выборке определить закон распределения случайной величины Х.

Уникальность: от 40%
Доступность: сразу
450 ₽
Готовая работа

"Случайные" (псевдослучайные) числа

Уникальность: от 40%
Доступность: сразу
300 ₽
Готовая работа

КУРСОВАЯ РАБОТА по учебной дисциплине " Теория вероятностей и математическая статистика "

Уникальность: от 40%
Доступность: сразу
750 ₽
Готовая работа

Теория вероятностей и математическая статистика Вариант № 2

Уникальность: от 40%
Доступность: сразу
750 ₽
Готовая работа

Комплект заданий для контрольной работы по дисциплине «Математика» Вариант 20

Уникальность: от 40%
Доступность: сразу
150 ₽
Готовая работа

Модели управления запасами

Уникальность: от 40%
Доступность: сразу
660 ₽