Автор24

Информация о работе

Подробнее о работе

Страница работы

Теория вероятностей и математическая статистика, 18 задач, вариант 18

  • 24 страниц
  • 2015 год
  • 60 просмотров
  • 0 покупок
Автор работы

Valfreyja6

Преподаватель вуза с 20-ти летним стажем и огромным опытом выполнения студенческих работ

720 ₽

Работа будет доступна в твоём личном кабинете после покупки

Гарантия сервиса Автор24

Уникальность не ниже 50%

Фрагменты работ

Задача № 1
При перевозке 118 деталей, из которых 19 были забракованы, утеряна 1 стандартная деталь. Найти вероятность того, что наудачу извлеченная деталь (из оставшихся) окажется стандартной.
Задача № 2
На один ряд, состоящий из 22 мест, случайно садятся 22 ученика. Найти вероятность того, что 3 определенных ученика окажутся рядом.
Задача № 3
Из урны, содержащей 28 белых и 22 черных шаров, вынимаются два шара.
а) Найти вероятность того, что шары разных цветов.
б) Найти вероятность того, что шары одного цвета.
Задача № 4
Имеются две урны. В первой лежат 23 белых и 28 черных шаров; во второй находятся 22 белых и 25 черных шаров. Из первой урны во вторую перекладывают один шар.
Какова вероятность после этого вынуть:
а) белый шар из I урны
б) белый шар из II урны.
Задача № 5
На I складе имеется 28 изделий, из которых 3 бракованных; на II складе находятся 33 изделия, из которых 5 бракованных. Из каждого склада выбирается по одному изделию случайным образом. После чего из этой пары отбирается одно изделие, которое оказалось небракованным. Какова вероятность, что это изделие из I склада?
Задача № 6
Среди 21 часов, поступивших в ремонт, 2 с поломками оси. Наудачу взяты 3 часов. Составить ряд распределения числа часов с поломками оси среди взятых трех. Найти функцию распределения дискретной случайной величины. Построить ее график.
Задача № 7
Даны независимые случайные величины X и Y заданы своими рядами распределений:


xi 2 4

pi 0,70,3

yi -1 0 19

pi 0,4 0,1 0,5

Составить закон распределения их суммы - случайной величины Z=X+Y и проверить выполнение свойства математического ожидания:
М(X+Y)=M(X) + M(Y)
Задача № 8
Задана функция распределения непрерывной случайной величины Х:
F(X)=
Определить вероятность того, что в результате испытаний случайная величина Х примет значение, большее 18.3, но меньшее 18.7. Найти плотность вероятности распределения случайной величины Х и ее дисперсию.
Задача № 9
Производится телефонный опрос потребителей некоторой продукции. Каждый потребитель не зависимо от других может дать положительный отзыв о продукции с вероятностью 18/40 . Составить закон распределения случайной величины Х - числа положительных отзывов среди 3-х опрошенных потребителей. Найти математическое ожидание и дисперсию числа положительных отзывов среди 3-х опрошенных.
Задача № 10
В большой партии телевизоров 18 процентов бракованных. При продаже телевизоры проверяются по одному до тех пор, пока не будет найден качественный телевизор. При этом бракованные телевизоры отправляются обратно на завод. Какова вероятность того, что на завод будет отправлено: а) более 3 телевизоров; б) от 4 до 6 телевизоров. Найти м.о. и с.к.о. числа проверенных телевизоров.
Задача № 11
К киоску в среднем за 18 минут приходит 1 покупатель. Считая поток покупателей простейшим, найти вероятность того, что за 2 минуты к киоску подойдет: а) менее 2 покупателей; б) хотя бы 1 покупатель. Найти м.о. и с.к.о. числа покупателей за 1 минуту.
Задача № 12
Вероятность появления бракованного изделия при массовом производстве равна 0,002. Определить вероятность того, что в партии из 980 изделий окажется не более двух бракованных.
Задача № 13
При измерении большого земельного участка его длина округляется до ближайшего целого числа метров. Какова вероятность того, что возникающая при этом ошибка а) не превысит 28 см; б) будет лежать в пределах от 23 см до 60 см. Найти м.о. и с.к.о. ошибки округления.
Задача № 14
К киоску покупатели подходят в среднем через каждые 18 минут. Киоск начинает работу в 9 часов утра. Считая поток покупателей простейшим, найти вероятность того, что между 3 и 4 покупателем (от начала рабочего дня) пройдет: а) не менее 20 минут; б) от 19 до 21 минут. Найти м.о. и дисперсию времени от 10 часов утра до первого после этого времени покупателя.
Задача № 15
Случайная величина имеет нормальное распределение с математическим ожиданием 36 и средним квадратическим отклонением 18. Найти вероятность того, что ее значение
а) будет отрицательным;
б) будет лежать в пределах от -1 до 3;
в) будет отличаться от среднего не более чем на 2.
Задача № 16
В результате измерения массы большого числа яблок некоторого сорта установлено, что масса одного яблока лежит в пределах от 118 до 380 граммов. Считая, что масса яблока – случайная величина, имеющая нормальное распределение, и используя правило «трех сигм», найти математическое ожидание и с.к.о. массы яблока. Найти вероятность того, что масса случайно выбранного яблока больше 218 граммов.
Задача № 17
Проведена серия из 15 экспериментов со случайной величиной X. По результатам наблюдений получена выборка значений этой случайной величины: x=(x1, x2, ...,x15)=(23,21,22,20,20,22,22,23,20,24,21,22,19,21,22).
По данной выборке требуется: 1) построить дискретный вариационный ряд; 2) определить численное значение моды и медианы ; 3) построить ряд распределения частот 4) построить выборочную функцию распределения и ее график; 5) найти несмещенную оценку генеральной средней; 6) найти смещенную и несмещенную оценки генеральной дисперсии (т.е. выборочную дисперсию и исправленную выборочную дисперсию) и соответствующие оценки среднего квадратичного отклонения.
Задача № 18
Проведена серия из 30 экспериментов со случайной величиной X. По результатам наблюдений получена выборка значений этой случайной величины.

По данной выборке требуется: 1) построить интервальный вариационный ряд, определив количество групп по формуле Стерджесса; 2) определить численное значение моды и медианы ; 3) дать графическое изображение ряда в виде гистограммы частот, полигона и кумуляты; 4) построить выборочную функцию распределения; 5) найти несмещенную оценку генеральной средней; 6) найти смещенную и несмещенную оценки генеральной дисперсии (т.е. выборочную дисперсию и исправленную выборочную дисперсию) и соответствующие оценки среднего квадратичного отклонения.

Решение Дискретная случайная величина Х (число часов с поломками оси среди взятых трех) имеет следующие возможные значения: х1=0, х2=1, х3=2.
Найдем соответствующие им вероятности по классической формуле вероятности.
;
;

Ряд распределения числа часов с поломками оси среди взятых трех имеет вид
хi 0 1 2
pi 0.7286 0.2571 0.0143
Функция распределения имеет вид
F(X)=p(X

Работа выполнена в Word, была проверена и зачтена без доработок.

отсутствует

Форма заказа новой работы

Не подошла эта работа?

Закажи новую работу, сделанную по твоим требованиям

Оставляя свои контактные данные и нажимая «Заказать Контрольную работу», я соглашаюсь пройти процедуру регистрации на Платформе, принимаю условия Пользовательского соглашения и Политики конфиденциальности в целях заключения соглашения.

Фрагменты работ

Задача № 1
При перевозке 118 деталей, из которых 19 были забракованы, утеряна 1 стандартная деталь. Найти вероятность того, что наудачу извлеченная деталь (из оставшихся) окажется стандартной.
Задача № 2
На один ряд, состоящий из 22 мест, случайно садятся 22 ученика. Найти вероятность того, что 3 определенных ученика окажутся рядом.
Задача № 3
Из урны, содержащей 28 белых и 22 черных шаров, вынимаются два шара.
а) Найти вероятность того, что шары разных цветов.
б) Найти вероятность того, что шары одного цвета.
Задача № 4
Имеются две урны. В первой лежат 23 белых и 28 черных шаров; во второй находятся 22 белых и 25 черных шаров. Из первой урны во вторую перекладывают один шар.
Какова вероятность после этого вынуть:
а) белый шар из I урны
б) белый шар из II урны.
Задача № 5
На I складе имеется 28 изделий, из которых 3 бракованных; на II складе находятся 33 изделия, из которых 5 бракованных. Из каждого склада выбирается по одному изделию случайным образом. После чего из этой пары отбирается одно изделие, которое оказалось небракованным. Какова вероятность, что это изделие из I склада?
Задача № 6
Среди 21 часов, поступивших в ремонт, 2 с поломками оси. Наудачу взяты 3 часов. Составить ряд распределения числа часов с поломками оси среди взятых трех. Найти функцию распределения дискретной случайной величины. Построить ее график.
Задача № 7
Даны независимые случайные величины X и Y заданы своими рядами распределений:


xi 2 4

pi 0,70,3

yi -1 0 19

pi 0,4 0,1 0,5

Составить закон распределения их суммы - случайной величины Z=X+Y и проверить выполнение свойства математического ожидания:
М(X+Y)=M(X) + M(Y)
Задача № 8
Задана функция распределения непрерывной случайной величины Х:
F(X)=
Определить вероятность того, что в результате испытаний случайная величина Х примет значение, большее 18.3, но меньшее 18.7. Найти плотность вероятности распределения случайной величины Х и ее дисперсию.
Задача № 9
Производится телефонный опрос потребителей некоторой продукции. Каждый потребитель не зависимо от других может дать положительный отзыв о продукции с вероятностью 18/40 . Составить закон распределения случайной величины Х - числа положительных отзывов среди 3-х опрошенных потребителей. Найти математическое ожидание и дисперсию числа положительных отзывов среди 3-х опрошенных.
Задача № 10
В большой партии телевизоров 18 процентов бракованных. При продаже телевизоры проверяются по одному до тех пор, пока не будет найден качественный телевизор. При этом бракованные телевизоры отправляются обратно на завод. Какова вероятность того, что на завод будет отправлено: а) более 3 телевизоров; б) от 4 до 6 телевизоров. Найти м.о. и с.к.о. числа проверенных телевизоров.
Задача № 11
К киоску в среднем за 18 минут приходит 1 покупатель. Считая поток покупателей простейшим, найти вероятность того, что за 2 минуты к киоску подойдет: а) менее 2 покупателей; б) хотя бы 1 покупатель. Найти м.о. и с.к.о. числа покупателей за 1 минуту.
Задача № 12
Вероятность появления бракованного изделия при массовом производстве равна 0,002. Определить вероятность того, что в партии из 980 изделий окажется не более двух бракованных.
Задача № 13
При измерении большого земельного участка его длина округляется до ближайшего целого числа метров. Какова вероятность того, что возникающая при этом ошибка а) не превысит 28 см; б) будет лежать в пределах от 23 см до 60 см. Найти м.о. и с.к.о. ошибки округления.
Задача № 14
К киоску покупатели подходят в среднем через каждые 18 минут. Киоск начинает работу в 9 часов утра. Считая поток покупателей простейшим, найти вероятность того, что между 3 и 4 покупателем (от начала рабочего дня) пройдет: а) не менее 20 минут; б) от 19 до 21 минут. Найти м.о. и дисперсию времени от 10 часов утра до первого после этого времени покупателя.
Задача № 15
Случайная величина имеет нормальное распределение с математическим ожиданием 36 и средним квадратическим отклонением 18. Найти вероятность того, что ее значение
а) будет отрицательным;
б) будет лежать в пределах от -1 до 3;
в) будет отличаться от среднего не более чем на 2.
Задача № 16
В результате измерения массы большого числа яблок некоторого сорта установлено, что масса одного яблока лежит в пределах от 118 до 380 граммов. Считая, что масса яблока – случайная величина, имеющая нормальное распределение, и используя правило «трех сигм», найти математическое ожидание и с.к.о. массы яблока. Найти вероятность того, что масса случайно выбранного яблока больше 218 граммов.
Задача № 17
Проведена серия из 15 экспериментов со случайной величиной X. По результатам наблюдений получена выборка значений этой случайной величины: x=(x1, x2, ...,x15)=(23,21,22,20,20,22,22,23,20,24,21,22,19,21,22).
По данной выборке требуется: 1) построить дискретный вариационный ряд; 2) определить численное значение моды и медианы ; 3) построить ряд распределения частот 4) построить выборочную функцию распределения и ее график; 5) найти несмещенную оценку генеральной средней; 6) найти смещенную и несмещенную оценки генеральной дисперсии (т.е. выборочную дисперсию и исправленную выборочную дисперсию) и соответствующие оценки среднего квадратичного отклонения.
Задача № 18
Проведена серия из 30 экспериментов со случайной величиной X. По результатам наблюдений получена выборка значений этой случайной величины.

По данной выборке требуется: 1) построить интервальный вариационный ряд, определив количество групп по формуле Стерджесса; 2) определить численное значение моды и медианы ; 3) дать графическое изображение ряда в виде гистограммы частот, полигона и кумуляты; 4) построить выборочную функцию распределения; 5) найти несмещенную оценку генеральной средней; 6) найти смещенную и несмещенную оценки генеральной дисперсии (т.е. выборочную дисперсию и исправленную выборочную дисперсию) и соответствующие оценки среднего квадратичного отклонения.

Решение Дискретная случайная величина Х (число часов с поломками оси среди взятых трех) имеет следующие возможные значения: х1=0, х2=1, х3=2.
Найдем соответствующие им вероятности по классической формуле вероятности.
;
;

Ряд распределения числа часов с поломками оси среди взятых трех имеет вид
хi 0 1 2
pi 0.7286 0.2571 0.0143
Функция распределения имеет вид
F(X)=p(X

Работа выполнена в Word, была проверена и зачтена без доработок.

отсутствует

Купить эту работу

Теория вероятностей и математическая статистика, 18 задач, вариант 18

720 ₽

или заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 200 ₽

Гарантии Автор24

Изображения работ

Страница работы
Страница работы
Страница работы

Понравилась эта работа?

или

20 сентября 2018 заказчик разместил работу

Выбранный эксперт:

Автор работы
Valfreyja6
4
Преподаватель вуза с 20-ти летним стажем и огромным опытом выполнения студенческих работ
Купить эту работу vs Заказать новую
0 раз Куплено Выполняется индивидуально
Не менее 40%
Исполнитель, загружая работу в «Банк готовых работ» подтверждает, что уровень оригинальности работы составляет не менее 40%
Уникальность Выполняется индивидуально
Сразу в личном кабинете Доступность Срок 1—5 дней
720 ₽ Цена от 200 ₽

5 Похожих работ

Контрольная работа

кр№6 УИПА

Уникальность: от 40%
Доступность: сразу
400 ₽
Контрольная работа

ТеорверКР№7вар7УИПА

Уникальность: от 40%
Доступность: сразу
400 ₽
Контрольная работа

ТВ кр№7вар6 УИПА

Уникальность: от 40%
Доступность: сразу
400 ₽
Контрольная работа

35 задач по ТВиМС для заочного

Уникальность: от 40%
Доступность: сразу
400 ₽
Контрольная работа

Теория вероятности и математическая статистика

Уникальность: от 40%
Доступность: сразу
300 ₽

Отзывы студентов

Отзыв Филипп Минаев об авторе Valfreyja6 2016-01-28
Контрольная работа

спасибо

Общая оценка 5
Отзыв MariyaS об авторе Valfreyja6 2015-03-10
Контрольная работа

Спасибо огромное за работу!

Общая оценка 5
Отзыв style2off1988 об авторе Valfreyja6 2015-02-16
Контрольная работа

Все отлично. Буду заказывать еще. Очень понравилось, как работает автор, быстро и качественно.

Общая оценка 5
Отзыв Кутырев Сергей об авторе Valfreyja6 2018-04-17
Контрольная работа

Спасибо, большое! Выполнено безупречно. Преподаватель после такой контрольной, поставил автоматом зачет по другому своему предмету.

Общая оценка 5

другие учебные работы по предмету

Готовая работа

Общая характеристика деятельности В.В. Бианки в области теории и практики детской литературы

Уникальность: от 40%
Доступность: сразу
200 ₽
Готовая работа

Задачи по теории вероятностей и мат.статистике

Уникальность: от 40%
Доступность: сразу
500 ₽
Готовая работа

Математическая обработка гидрографических измерений

Уникальность: от 40%
Доступность: сразу
1000 ₽
Готовая работа

"Измерение двумерной системы.Оценка параметров распределения некоррелированных величин."

Уникальность: от 40%
Доступность: сразу
400 ₽
Готовая работа

КУРСОВАЯ РАБОТА по учебной дисциплине " Теория вероятностей и математическая статистика "

Уникальность: от 40%
Доступность: сразу
750 ₽
Готовая работа

Выбор наиболее эффективных методов

Уникальность: от 40%
Доступность: сразу
400 ₽
Готовая работа

В результате измерений некоторой физической величины Х получена выборка. По выборке определить закон распределения случайной величины Х.

Уникальность: от 40%
Доступность: сразу
450 ₽
Готовая работа

"Случайные" (псевдослучайные) числа

Уникальность: от 40%
Доступность: сразу
300 ₽
Готовая работа

КУРСОВАЯ РАБОТА по учебной дисциплине " Теория вероятностей и математическая статистика "

Уникальность: от 40%
Доступность: сразу
750 ₽
Готовая работа

Теория вероятностей и математическая статистика Вариант № 2

Уникальность: от 40%
Доступность: сразу
750 ₽
Готовая работа

Комплект заданий для контрольной работы по дисциплине «Математика» Вариант 20

Уникальность: от 40%
Доступность: сразу
150 ₽
Готовая работа

Модели управления запасами

Уникальность: от 40%
Доступность: сразу
660 ₽