спасибо
Подробнее о работе
Гарантия сервиса Автор24
Уникальность не ниже 50%
нет
Задача № 5
В каждой из трех коробок находится по три белых и пять красных шаров. Из каждой коробки наудачу вынимается по одному шару. Найти вероятности событий:
А – все шары красные
В – только один шар красный
С – хотя бы один шар красный
Задача № 19
Математическое ожидание случайной величины распределенной нормальному закону, равно -2, а вероятность попадания значений случайной величины в интервал |η + 2| < 4 равна 0,4. Найти её дисперсию; построить кривую вероятности; вычислить вероятности событий: А – случайная величина примет значение большее, чем m + σ, В – случайная величина примет отрицательные значения.
задание 3 схема 29
В заданиях 21 – 30 рассматривается прибор, состоящий из двух независимо работающих блоков А и В, каждый из которых состоит из нескольких элементов. Известны вероятности отказов каждого из элементов:
p1=0.3, p2=0.2, p3=0.1, p4=0.1, p5=0.2, p6=0.2, p7=0.3. При отказе блока он подлежит полной замене, причем стоимость замены блока А составляет С1, блока В – С2 единиц стоимости. Предполагается, что за период времени Т замененный блок не выйдет ещё раз из строя.
1. Найти случайную величину η - стоимость восстановления прибора за период времени Т;
1.1. построить её ряд и функцию распределения;
1.2. вычислить математическое ожидание, дисперсию и среднее квадратическое отклонение.
2. Построить модель найденной случайной величины для двадцати приборов (методом жребия получить её 20 значений):
2.1. найти экспериментальные ряд и функцию распределения;
2.2. найти оценки математического ожидания, дисперсии и среднего квадратического отклонения;
2.3. построить графики теоретических и экспериментальных ряда и функции распределения.
3. С помощью критерия Пирсона оценить соответствие экспериментального распределения теоретическому с уровнем значимости α=0,05.
Замечание. Расчеты произвести с точностью до четырех знаков после запятой.
Задание 4
В четвертом задании предполагается, что случайная величина распределена по нормальному закону. По выборке объёмом n=20 вычислены оценки математического ожидания m * и дисперсии s^2. При заданной доверительной вероятности найти предельную ошибку оценки математического ожидания и доверительный интервал при заданной доверительной информации β. Определить, какими будут эти величины, если при выборке объёмом n=40 получены такие же величины оценок. Исходные величины следует взять из таблицы, приведенной ниже.
полученная оценка-отлично
нет
Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям
нет
Задача № 5
В каждой из трех коробок находится по три белых и пять красных шаров. Из каждой коробки наудачу вынимается по одному шару. Найти вероятности событий:
А – все шары красные
В – только один шар красный
С – хотя бы один шар красный
Задача № 19
Математическое ожидание случайной величины распределенной нормальному закону, равно -2, а вероятность попадания значений случайной величины в интервал |η + 2| < 4 равна 0,4. Найти её дисперсию; построить кривую вероятности; вычислить вероятности событий: А – случайная величина примет значение большее, чем m + σ, В – случайная величина примет отрицательные значения.
задание 3 схема 29
В заданиях 21 – 30 рассматривается прибор, состоящий из двух независимо работающих блоков А и В, каждый из которых состоит из нескольких элементов. Известны вероятности отказов каждого из элементов:
p1=0.3, p2=0.2, p3=0.1, p4=0.1, p5=0.2, p6=0.2, p7=0.3. При отказе блока он подлежит полной замене, причем стоимость замены блока А составляет С1, блока В – С2 единиц стоимости. Предполагается, что за период времени Т замененный блок не выйдет ещё раз из строя.
1. Найти случайную величину η - стоимость восстановления прибора за период времени Т;
1.1. построить её ряд и функцию распределения;
1.2. вычислить математическое ожидание, дисперсию и среднее квадратическое отклонение.
2. Построить модель найденной случайной величины для двадцати приборов (методом жребия получить её 20 значений):
2.1. найти экспериментальные ряд и функцию распределения;
2.2. найти оценки математического ожидания, дисперсии и среднего квадратического отклонения;
2.3. построить графики теоретических и экспериментальных ряда и функции распределения.
3. С помощью критерия Пирсона оценить соответствие экспериментального распределения теоретическому с уровнем значимости α=0,05.
Замечание. Расчеты произвести с точностью до четырех знаков после запятой.
Задание 4
В четвертом задании предполагается, что случайная величина распределена по нормальному закону. По выборке объёмом n=20 вычислены оценки математического ожидания m * и дисперсии s^2. При заданной доверительной вероятности найти предельную ошибку оценки математического ожидания и доверительный интервал при заданной доверительной информации β. Определить, какими будут эти величины, если при выборке объёмом n=40 получены такие же величины оценок. Исходные величины следует взять из таблицы, приведенной ниже.
полученная оценка-отлично
нет
Купить эту работу vs Заказать новую | ||
---|---|---|
0 раз | Куплено | Выполняется индивидуально |
Не менее 40%
Исполнитель, загружая работу в «Банк готовых работ» подтверждает, что
уровень оригинальности
работы составляет не менее 40%
|
Уникальность | Выполняется индивидуально |
Сразу в личном кабинете | Доступность | Срок 1—5 дней |
70 ₽ | Цена | от 200 ₽ |
Не подошла эта работа?
В нашей базе 51749 Контрольных работ — поможем найти подходящую